Pruning and quantization algorithm with applications in memristor-based convolutional neural network

Abstract The human brain’s ultra-low power consumption and highly parallel computational capabilities can be accomplished by memristor-based convolutional neural networks. However, with the rapid development of memristor-based convolutional neural networks in various fields, more complex application...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Guo, Mei [verfasserIn]

Sun, Yurui

Zhu, Yongliang

Han, Mingqiao

Dou, Gang

Wen, Shiping

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Memristor

Convolutional neural network

Network pruning

Quantization weight

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Cognitive neurodynamics - Dordrecht [u.a.] : Springer, 2007, 18(2023), 1 vom: 19. Jan., Seite 233-245

Übergeordnetes Werk:

volume:18 ; year:2023 ; number:1 ; day:19 ; month:01 ; pages:233-245

Links:

Volltext

DOI / URN:

10.1007/s11571-022-09927-7

Katalog-ID:

SPR054854814

Nicht das Richtige dabei?

Schreiben Sie uns!