Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions”
Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occlude...
Ausführliche Beschreibung
Autor*in: |
Li, Gang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Visual Intelligence - Springer Nature Singapore, 2023, 2(2024), 1 vom: 22. Feb. |
---|---|
Übergeordnetes Werk: |
volume:2 ; year:2024 ; number:1 ; day:22 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s44267-024-00036-z |
---|
Katalog-ID: |
SPR054861152 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR054861152 | ||
003 | DE-627 | ||
005 | 20240222091227.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240222s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44267-024-00036-z |2 doi | |
035 | |a (DE-627)SPR054861152 | ||
035 | |a (SPR)s44267-024-00036-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Gang |e verfasserin |0 (orcid)0000-0001-9956-7653 |4 aut | |
245 | 1 | 0 | |a Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. | ||
650 | 4 | |a Pedestrian detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Object detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Occlusion handling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Evaluation metric |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Xiang |4 aut | |
700 | 1 | |a Zhang, Shanshan |4 aut | |
700 | 1 | |a Yang, Jian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Visual Intelligence |d Springer Nature Singapore, 2023 |g 2(2024), 1 vom: 22. Feb. |w (DE-627)184529095X |x 2731-9008 |7 nnns |
773 | 1 | 8 | |g volume:2 |g year:2024 |g number:1 |g day:22 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44267-024-00036-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2 |j 2024 |e 1 |b 22 |c 02 |
author_variant |
g l gl x l xl s z sz j y jy |
---|---|
matchkey_str |
article:27319008:2024----::oadmrrlaleautoipdsradtcinye |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s44267-024-00036-z doi (DE-627)SPR054861152 (SPR)s44267-024-00036-z-e DE-627 ger DE-627 rakwb eng Li, Gang verfasserin (orcid)0000-0001-9956-7653 aut Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 Li, Xiang aut Zhang, Shanshan aut Yang, Jian aut Enthalten in Visual Intelligence Springer Nature Singapore, 2023 2(2024), 1 vom: 22. Feb. (DE-627)184529095X 2731-9008 nnns volume:2 year:2024 number:1 day:22 month:02 https://dx.doi.org/10.1007/s44267-024-00036-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2024 1 22 02 |
spelling |
10.1007/s44267-024-00036-z doi (DE-627)SPR054861152 (SPR)s44267-024-00036-z-e DE-627 ger DE-627 rakwb eng Li, Gang verfasserin (orcid)0000-0001-9956-7653 aut Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 Li, Xiang aut Zhang, Shanshan aut Yang, Jian aut Enthalten in Visual Intelligence Springer Nature Singapore, 2023 2(2024), 1 vom: 22. Feb. (DE-627)184529095X 2731-9008 nnns volume:2 year:2024 number:1 day:22 month:02 https://dx.doi.org/10.1007/s44267-024-00036-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2024 1 22 02 |
allfields_unstemmed |
10.1007/s44267-024-00036-z doi (DE-627)SPR054861152 (SPR)s44267-024-00036-z-e DE-627 ger DE-627 rakwb eng Li, Gang verfasserin (orcid)0000-0001-9956-7653 aut Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 Li, Xiang aut Zhang, Shanshan aut Yang, Jian aut Enthalten in Visual Intelligence Springer Nature Singapore, 2023 2(2024), 1 vom: 22. Feb. (DE-627)184529095X 2731-9008 nnns volume:2 year:2024 number:1 day:22 month:02 https://dx.doi.org/10.1007/s44267-024-00036-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2024 1 22 02 |
allfieldsGer |
10.1007/s44267-024-00036-z doi (DE-627)SPR054861152 (SPR)s44267-024-00036-z-e DE-627 ger DE-627 rakwb eng Li, Gang verfasserin (orcid)0000-0001-9956-7653 aut Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 Li, Xiang aut Zhang, Shanshan aut Yang, Jian aut Enthalten in Visual Intelligence Springer Nature Singapore, 2023 2(2024), 1 vom: 22. Feb. (DE-627)184529095X 2731-9008 nnns volume:2 year:2024 number:1 day:22 month:02 https://dx.doi.org/10.1007/s44267-024-00036-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2024 1 22 02 |
allfieldsSound |
10.1007/s44267-024-00036-z doi (DE-627)SPR054861152 (SPR)s44267-024-00036-z-e DE-627 ger DE-627 rakwb eng Li, Gang verfasserin (orcid)0000-0001-9956-7653 aut Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 Li, Xiang aut Zhang, Shanshan aut Yang, Jian aut Enthalten in Visual Intelligence Springer Nature Singapore, 2023 2(2024), 1 vom: 22. Feb. (DE-627)184529095X 2731-9008 nnns volume:2 year:2024 number:1 day:22 month:02 https://dx.doi.org/10.1007/s44267-024-00036-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2 2024 1 22 02 |
language |
English |
source |
Enthalten in Visual Intelligence 2(2024), 1 vom: 22. Feb. volume:2 year:2024 number:1 day:22 month:02 |
sourceStr |
Enthalten in Visual Intelligence 2(2024), 1 vom: 22. Feb. volume:2 year:2024 number:1 day:22 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Pedestrian detection Object detection Occlusion handling Evaluation metric |
isfreeaccess_bool |
true |
container_title |
Visual Intelligence |
authorswithroles_txt_mv |
Li, Gang @@aut@@ Li, Xiang @@aut@@ Zhang, Shanshan @@aut@@ Yang, Jian @@aut@@ |
publishDateDaySort_date |
2024-02-22T00:00:00Z |
hierarchy_top_id |
184529095X |
id |
SPR054861152 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054861152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222091227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44267-024-00036-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054861152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44267-024-00036-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9956-7653</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions”</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pedestrian detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Occlusion handling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaluation metric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shanshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Visual Intelligence</subfield><subfield code="d">Springer Nature Singapore, 2023</subfield><subfield code="g">2(2024), 1 vom: 22. Feb.</subfield><subfield code="w">(DE-627)184529095X</subfield><subfield code="x">2731-9008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44267-024-00036-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Li, Gang |
spellingShingle |
Li, Gang misc Pedestrian detection misc Object detection misc Occlusion handling misc Evaluation metric Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
authorStr |
Li, Gang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)184529095X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2731-9008 |
topic_title |
Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” Pedestrian detection (dpeaa)DE-He213 Object detection (dpeaa)DE-He213 Occlusion handling (dpeaa)DE-He213 Evaluation metric (dpeaa)DE-He213 |
topic |
misc Pedestrian detection misc Object detection misc Occlusion handling misc Evaluation metric |
topic_unstemmed |
misc Pedestrian detection misc Object detection misc Occlusion handling misc Evaluation metric |
topic_browse |
misc Pedestrian detection misc Object detection misc Occlusion handling misc Evaluation metric |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Visual Intelligence |
hierarchy_parent_id |
184529095X |
hierarchy_top_title |
Visual Intelligence |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)184529095X |
title |
Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
ctrlnum |
(DE-627)SPR054861152 (SPR)s44267-024-00036-z-e |
title_full |
Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
author_sort |
Li, Gang |
journal |
Visual Intelligence |
journalStr |
Visual Intelligence |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Li, Gang Li, Xiang Zhang, Shanshan Yang, Jian |
container_volume |
2 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Gang |
doi_str_mv |
10.1007/s44267-024-00036-z |
normlink |
(ORCID)0000-0001-9956-7653 |
normlink_prefix_str_mv |
(orcid)0000-0001-9956-7653 |
title_sort |
towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
title_auth |
Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
abstract |
Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. © The Author(s) 2024 |
abstractGer |
Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. © The Author(s) 2024 |
abstract_unstemmed |
Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions” |
url |
https://dx.doi.org/10.1007/s44267-024-00036-z |
remote_bool |
true |
author2 |
Li, Xiang Zhang, Shanshan Yang, Jian |
author2Str |
Li, Xiang Zhang, Shanshan Yang, Jian |
ppnlink |
184529095X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44267-024-00036-z |
up_date |
2024-07-04T03:17:55.472Z |
_version_ |
1803616859428225024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR054861152</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222091227.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240222s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44267-024-00036-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054861152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44267-024-00036-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9956-7653</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards more reliable evaluation in pedestrian detection by rethinking “ignore regions”</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It remains a challenging task to detect pedestrians in crowds and it needs more efforts to understand why the detectors fail. When we perform an error analysis based on the traditional evaluation strategy, we find that it produces many misleading false positives, which in fact cover occluded pedestrians. The reason for this is that we usually have two kinds of annotations in the dataset: regular pedestrians (detection targets) labeled by full-body boxes and ignored pedestrians (NOT detection targets) labeled by visible boxes. Ignored pedestrians are labeled as an additional category termed the “ignore region”. Nevertheless, our detectors always predict a full-body box for each pedestrian. This gap results in the following case: when a detector successfully predicts a full-body box for those ignored pedestrians, a false positive is triggered due to the low overlap between the predicted full-body box and the labeled visible box for the ignored pedestrian. This becomes even more harmful as the detector improves and becomes more capable of locating occluded pedestrians. To alleviate this issue, we devise a new pedestrian detection pipeline, which considers the additional visible box at both the detection and evaluation stages. During detection, we predict an extra visible box apart from the full-body box for every instance; during evaluation, we employ visible boxes instead of full-body boxes to match the “ignore region”. We apply the new pipeline to dozens of detection methods and validate the effectiveness of our pipeline in reducing the over-reporting of false positives and providing more reliable evaluation results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pedestrian detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Occlusion handling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaluation metric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shanshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Visual Intelligence</subfield><subfield code="d">Springer Nature Singapore, 2023</subfield><subfield code="g">2(2024), 1 vom: 22. Feb.</subfield><subfield code="w">(DE-627)184529095X</subfield><subfield code="x">2731-9008</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44267-024-00036-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4013977 |