Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling
Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conduc...
Ausführliche Beschreibung
Autor*in: |
Lian, Meng [verfasserIn] Ding, Wei [verfasserIn] Liu, Song [verfasserIn] Wang, Yufeng [verfasserIn] Zhu, Tianyi [verfasserIn] Miao, Yue-E. [verfasserIn] Zhang, Chao [verfasserIn] Liu, Tianxi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024. corrected publication 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Nano-Micro letters - Springer Nature Singapore, 2009, 16(2024), 1 vom: 26. Feb. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2024 ; number:1 ; day:26 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s40820-024-01356-x |
---|
Katalog-ID: |
SPR054913845 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR054913845 | ||
003 | DE-627 | ||
005 | 20241010064743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240227s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40820-024-01356-x |2 doi | |
035 | |a (DE-627)SPR054913845 | ||
035 | |a (SPR)s40820-024-01356-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |q VZ |
100 | 1 | |a Lian, Meng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024. corrected publication 2024 | ||
520 | |a Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. | ||
520 | |a Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. | ||
650 | 4 | |a Transparent aerogel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cellulose nanofiber aerogel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Delaminated gelation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Thermal insulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Passive daytime radiative cooling |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ding, Wei |e verfasserin |4 aut | |
700 | 1 | |a Liu, Song |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yufeng |e verfasserin |4 aut | |
700 | 1 | |a Zhu, Tianyi |e verfasserin |4 aut | |
700 | 1 | |a Miao, Yue-E. |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Chao |e verfasserin |4 aut | |
700 | 1 | |a Liu, Tianxi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nano-Micro letters |d Springer Nature Singapore, 2009 |g 16(2024), 1 vom: 26. Feb. |w (DE-627)680319581 |w (DE-600)2642093-4 |x 2150-5551 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2024 |g number:1 |g day:26 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40820-024-01356-x |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2024 |e 1 |b 26 |c 02 |
author_variant |
m l ml w d wd s l sl y w yw t z tz y e m yem c z cz t l tl |
---|---|
matchkey_str |
article:21505551:2024----::ihyoosetasaetehnclylxbeeoeselznslr |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s40820-024-01356-x doi (DE-627)SPR054913845 (SPR)s40820-024-01356-x-e DE-627 ger DE-627 rakwb eng 050 VZ Lian, Meng verfasserin aut Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024. corrected publication 2024 Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 Ding, Wei verfasserin aut Liu, Song verfasserin aut Wang, Yufeng verfasserin aut Zhu, Tianyi verfasserin aut Miao, Yue-E. verfasserin aut Zhang, Chao verfasserin aut Liu, Tianxi verfasserin aut Enthalten in Nano-Micro letters Springer Nature Singapore, 2009 16(2024), 1 vom: 26. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:16 year:2024 number:1 day:26 month:02 https://dx.doi.org/10.1007/s40820-024-01356-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2024 1 26 02 |
spelling |
10.1007/s40820-024-01356-x doi (DE-627)SPR054913845 (SPR)s40820-024-01356-x-e DE-627 ger DE-627 rakwb eng 050 VZ Lian, Meng verfasserin aut Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024. corrected publication 2024 Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 Ding, Wei verfasserin aut Liu, Song verfasserin aut Wang, Yufeng verfasserin aut Zhu, Tianyi verfasserin aut Miao, Yue-E. verfasserin aut Zhang, Chao verfasserin aut Liu, Tianxi verfasserin aut Enthalten in Nano-Micro letters Springer Nature Singapore, 2009 16(2024), 1 vom: 26. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:16 year:2024 number:1 day:26 month:02 https://dx.doi.org/10.1007/s40820-024-01356-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2024 1 26 02 |
allfields_unstemmed |
10.1007/s40820-024-01356-x doi (DE-627)SPR054913845 (SPR)s40820-024-01356-x-e DE-627 ger DE-627 rakwb eng 050 VZ Lian, Meng verfasserin aut Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024. corrected publication 2024 Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 Ding, Wei verfasserin aut Liu, Song verfasserin aut Wang, Yufeng verfasserin aut Zhu, Tianyi verfasserin aut Miao, Yue-E. verfasserin aut Zhang, Chao verfasserin aut Liu, Tianxi verfasserin aut Enthalten in Nano-Micro letters Springer Nature Singapore, 2009 16(2024), 1 vom: 26. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:16 year:2024 number:1 day:26 month:02 https://dx.doi.org/10.1007/s40820-024-01356-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2024 1 26 02 |
allfieldsGer |
10.1007/s40820-024-01356-x doi (DE-627)SPR054913845 (SPR)s40820-024-01356-x-e DE-627 ger DE-627 rakwb eng 050 VZ Lian, Meng verfasserin aut Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024. corrected publication 2024 Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 Ding, Wei verfasserin aut Liu, Song verfasserin aut Wang, Yufeng verfasserin aut Zhu, Tianyi verfasserin aut Miao, Yue-E. verfasserin aut Zhang, Chao verfasserin aut Liu, Tianxi verfasserin aut Enthalten in Nano-Micro letters Springer Nature Singapore, 2009 16(2024), 1 vom: 26. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:16 year:2024 number:1 day:26 month:02 https://dx.doi.org/10.1007/s40820-024-01356-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2024 1 26 02 |
allfieldsSound |
10.1007/s40820-024-01356-x doi (DE-627)SPR054913845 (SPR)s40820-024-01356-x-e DE-627 ger DE-627 rakwb eng 050 VZ Lian, Meng verfasserin aut Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024. corrected publication 2024 Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 Ding, Wei verfasserin aut Liu, Song verfasserin aut Wang, Yufeng verfasserin aut Zhu, Tianyi verfasserin aut Miao, Yue-E. verfasserin aut Zhang, Chao verfasserin aut Liu, Tianxi verfasserin aut Enthalten in Nano-Micro letters Springer Nature Singapore, 2009 16(2024), 1 vom: 26. Feb. (DE-627)680319581 (DE-600)2642093-4 2150-5551 nnns volume:16 year:2024 number:1 day:26 month:02 https://dx.doi.org/10.1007/s40820-024-01356-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2024 1 26 02 |
language |
English |
source |
Enthalten in Nano-Micro letters 16(2024), 1 vom: 26. Feb. volume:16 year:2024 number:1 day:26 month:02 |
sourceStr |
Enthalten in Nano-Micro letters 16(2024), 1 vom: 26. Feb. volume:16 year:2024 number:1 day:26 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Transparent aerogel Cellulose nanofiber aerogel Delaminated gelation Thermal insulation Passive daytime radiative cooling |
dewey-raw |
050 |
isfreeaccess_bool |
true |
container_title |
Nano-Micro letters |
authorswithroles_txt_mv |
Lian, Meng @@aut@@ Ding, Wei @@aut@@ Liu, Song @@aut@@ Wang, Yufeng @@aut@@ Zhu, Tianyi @@aut@@ Miao, Yue-E. @@aut@@ Zhang, Chao @@aut@@ Liu, Tianxi @@aut@@ |
publishDateDaySort_date |
2024-02-26T00:00:00Z |
hierarchy_top_id |
680319581 |
dewey-sort |
250 |
id |
SPR054913845 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054913845</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241010064743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240227s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-024-01356-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054913845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-024-01356-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lian, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024. corrected publication 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellulose nanofiber aerogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delaminated gelation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal insulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive daytime radiative cooling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tianyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Yue-E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tianxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Springer Nature Singapore, 2009</subfield><subfield code="g">16(2024), 1 vom: 26. Feb.</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-024-01356-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Lian, Meng |
spellingShingle |
Lian, Meng ddc 050 misc Transparent aerogel misc Cellulose nanofiber aerogel misc Delaminated gelation misc Thermal insulation misc Passive daytime radiative cooling Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
authorStr |
Lian, Meng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)680319581 |
format |
electronic Article |
dewey-ones |
050 - General serial publications |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2150-5551 |
topic_title |
050 VZ Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling Transparent aerogel (dpeaa)DE-He213 Cellulose nanofiber aerogel (dpeaa)DE-He213 Delaminated gelation (dpeaa)DE-He213 Thermal insulation (dpeaa)DE-He213 Passive daytime radiative cooling (dpeaa)DE-He213 |
topic |
ddc 050 misc Transparent aerogel misc Cellulose nanofiber aerogel misc Delaminated gelation misc Thermal insulation misc Passive daytime radiative cooling |
topic_unstemmed |
ddc 050 misc Transparent aerogel misc Cellulose nanofiber aerogel misc Delaminated gelation misc Thermal insulation misc Passive daytime radiative cooling |
topic_browse |
ddc 050 misc Transparent aerogel misc Cellulose nanofiber aerogel misc Delaminated gelation misc Thermal insulation misc Passive daytime radiative cooling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano-Micro letters |
hierarchy_parent_id |
680319581 |
dewey-tens |
050 - Magazines, journals & serials |
hierarchy_top_title |
Nano-Micro letters |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)680319581 (DE-600)2642093-4 |
title |
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
ctrlnum |
(DE-627)SPR054913845 (SPR)s40820-024-01356-x-e |
title_full |
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
author_sort |
Lian, Meng |
journal |
Nano-Micro letters |
journalStr |
Nano-Micro letters |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Lian, Meng Ding, Wei Liu, Song Wang, Yufeng Zhu, Tianyi Miao, Yue-E. Zhang, Chao Liu, Tianxi |
container_volume |
16 |
class |
050 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Lian, Meng |
doi_str_mv |
10.1007/s40820-024-01356-x |
dewey-full |
050 |
author2-role |
verfasserin |
title_sort |
highly porous yet transparent mechanically flexible aerogels realizing solar-thermal regulatory cooling |
title_auth |
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
abstract |
Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. © The Author(s) 2024. corrected publication 2024 |
abstractGer |
Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. © The Author(s) 2024. corrected publication 2024 |
abstract_unstemmed |
Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance. Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass. © The Author(s) 2024. corrected publication 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling |
url |
https://dx.doi.org/10.1007/s40820-024-01356-x |
remote_bool |
true |
author2 |
Ding, Wei Liu, Song Wang, Yufeng Zhu, Tianyi Miao, Yue-E. Zhang, Chao Liu, Tianxi |
author2Str |
Ding, Wei Liu, Song Wang, Yufeng Zhu, Tianyi Miao, Yue-E. Zhang, Chao Liu, Tianxi |
ppnlink |
680319581 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40820-024-01356-x |
up_date |
2024-10-10T04:49:36.257Z |
_version_ |
1812501130125508608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR054913845</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241010064743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240227s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40820-024-01356-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR054913845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40820-024-01356-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lian, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar-Thermal Regulatory Cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024. corrected publication 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW $ m^{−1} $ $ K^{−1} $), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transparent aerogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellulose nanofiber aerogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Delaminated gelation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal insulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive daytime radiative cooling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ding, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yufeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Tianyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miao, Yue-E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tianxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano-Micro letters</subfield><subfield code="d">Springer Nature Singapore, 2009</subfield><subfield code="g">16(2024), 1 vom: 26. Feb.</subfield><subfield code="w">(DE-627)680319581</subfield><subfield code="w">(DE-600)2642093-4</subfield><subfield code="x">2150-5551</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40820-024-01356-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.1695356 |