A Review and Synthesis of Multi-level Models for Causal Inference with Individual Level Exposures

Purpose of review Multi-level models are ways to model data using multiple levels of information. Here, we provide a narrative review some of the relevant literature on how multi-level models can interface with causal inference for individual level exposures. Recent findings Much of this discussion...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Keil, Alexander P. [verfasserIn]

Zadrozny, Sabrina

Edwards, Jessie K.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Multi-level models

Causal inference

Interference

G-computation

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Current epidemiology reports - Cham : Springer Internat. Publ., 2014, 11(2023), 1 vom: 10. Aug., Seite 54-62

Übergeordnetes Werk:

volume:11 ; year:2023 ; number:1 ; day:10 ; month:08 ; pages:54-62

Links:

Volltext

DOI / URN:

10.1007/s40471-023-00328-w

Katalog-ID:

SPR055016162

Nicht das Richtige dabei?

Schreiben Sie uns!