Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort
Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was...
Ausführliche Beschreibung
Autor*in: |
Jahan, Sadia [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of nephrology - Milano : Springer, 1996, 37(2023), 1 vom: 07. Juni, Seite 231-237 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2023 ; number:1 ; day:07 ; month:06 ; pages:231-237 |
Links: |
---|
DOI / URN: |
10.1007/s40620-023-01680-2 |
---|
Katalog-ID: |
SPR055061990 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055061990 | ||
003 | DE-627 | ||
005 | 20240308064714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240308s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40620-023-01680-2 |2 doi | |
035 | |a (DE-627)SPR055061990 | ||
035 | |a (SPR)s40620-023-01680-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jahan, Sadia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. | ||
650 | 4 | |a Progression prediction tool |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kidney failure risk equation KFRE |7 (dpeaa)DE-He213 | |
650 | 4 | |a Predict progression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kidney failure |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hale, Janine |4 aut | |
700 | 1 | |a Malacova, Eva |4 aut | |
700 | 1 | |a Hurst, Cameron |4 aut | |
700 | 1 | |a Kark, Adrian |4 aut | |
700 | 1 | |a Mallett, Andrew |0 (orcid)0000-0002-8752-2551 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of nephrology |d Milano : Springer, 1996 |g 37(2023), 1 vom: 07. Juni, Seite 231-237 |w (DE-627)269534512 |w (DE-600)1475007-7 |x 1724-6059 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2023 |g number:1 |g day:07 |g month:06 |g pages:231-237 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40620-023-01680-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 37 |j 2023 |e 1 |b 07 |c 06 |h 231-237 |
author_variant |
s j sj j h jh e m em c h ch a k ak a m am |
---|---|
matchkey_str |
article:17246059:2023----::eloleautookdefiueikqainipeitnporsinrmhoikdedsaeo |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s40620-023-01680-2 doi (DE-627)SPR055061990 (SPR)s40620-023-01680-2-e DE-627 ger DE-627 rakwb eng Jahan, Sadia verfasserin aut Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 Hale, Janine aut Malacova, Eva aut Hurst, Cameron aut Kark, Adrian aut Mallett, Andrew (orcid)0000-0002-8752-2551 aut Enthalten in Journal of nephrology Milano : Springer, 1996 37(2023), 1 vom: 07. Juni, Seite 231-237 (DE-627)269534512 (DE-600)1475007-7 1724-6059 nnns volume:37 year:2023 number:1 day:07 month:06 pages:231-237 https://dx.doi.org/10.1007/s40620-023-01680-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 37 2023 1 07 06 231-237 |
spelling |
10.1007/s40620-023-01680-2 doi (DE-627)SPR055061990 (SPR)s40620-023-01680-2-e DE-627 ger DE-627 rakwb eng Jahan, Sadia verfasserin aut Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 Hale, Janine aut Malacova, Eva aut Hurst, Cameron aut Kark, Adrian aut Mallett, Andrew (orcid)0000-0002-8752-2551 aut Enthalten in Journal of nephrology Milano : Springer, 1996 37(2023), 1 vom: 07. Juni, Seite 231-237 (DE-627)269534512 (DE-600)1475007-7 1724-6059 nnns volume:37 year:2023 number:1 day:07 month:06 pages:231-237 https://dx.doi.org/10.1007/s40620-023-01680-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 37 2023 1 07 06 231-237 |
allfields_unstemmed |
10.1007/s40620-023-01680-2 doi (DE-627)SPR055061990 (SPR)s40620-023-01680-2-e DE-627 ger DE-627 rakwb eng Jahan, Sadia verfasserin aut Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 Hale, Janine aut Malacova, Eva aut Hurst, Cameron aut Kark, Adrian aut Mallett, Andrew (orcid)0000-0002-8752-2551 aut Enthalten in Journal of nephrology Milano : Springer, 1996 37(2023), 1 vom: 07. Juni, Seite 231-237 (DE-627)269534512 (DE-600)1475007-7 1724-6059 nnns volume:37 year:2023 number:1 day:07 month:06 pages:231-237 https://dx.doi.org/10.1007/s40620-023-01680-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 37 2023 1 07 06 231-237 |
allfieldsGer |
10.1007/s40620-023-01680-2 doi (DE-627)SPR055061990 (SPR)s40620-023-01680-2-e DE-627 ger DE-627 rakwb eng Jahan, Sadia verfasserin aut Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 Hale, Janine aut Malacova, Eva aut Hurst, Cameron aut Kark, Adrian aut Mallett, Andrew (orcid)0000-0002-8752-2551 aut Enthalten in Journal of nephrology Milano : Springer, 1996 37(2023), 1 vom: 07. Juni, Seite 231-237 (DE-627)269534512 (DE-600)1475007-7 1724-6059 nnns volume:37 year:2023 number:1 day:07 month:06 pages:231-237 https://dx.doi.org/10.1007/s40620-023-01680-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 37 2023 1 07 06 231-237 |
allfieldsSound |
10.1007/s40620-023-01680-2 doi (DE-627)SPR055061990 (SPR)s40620-023-01680-2-e DE-627 ger DE-627 rakwb eng Jahan, Sadia verfasserin aut Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 Hale, Janine aut Malacova, Eva aut Hurst, Cameron aut Kark, Adrian aut Mallett, Andrew (orcid)0000-0002-8752-2551 aut Enthalten in Journal of nephrology Milano : Springer, 1996 37(2023), 1 vom: 07. Juni, Seite 231-237 (DE-627)269534512 (DE-600)1475007-7 1724-6059 nnns volume:37 year:2023 number:1 day:07 month:06 pages:231-237 https://dx.doi.org/10.1007/s40620-023-01680-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 37 2023 1 07 06 231-237 |
language |
English |
source |
Enthalten in Journal of nephrology 37(2023), 1 vom: 07. Juni, Seite 231-237 volume:37 year:2023 number:1 day:07 month:06 pages:231-237 |
sourceStr |
Enthalten in Journal of nephrology 37(2023), 1 vom: 07. Juni, Seite 231-237 volume:37 year:2023 number:1 day:07 month:06 pages:231-237 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Progression prediction tool Kidney failure risk equation KFRE Predict progression Kidney failure |
isfreeaccess_bool |
true |
container_title |
Journal of nephrology |
authorswithroles_txt_mv |
Jahan, Sadia @@aut@@ Hale, Janine @@aut@@ Malacova, Eva @@aut@@ Hurst, Cameron @@aut@@ Kark, Adrian @@aut@@ Mallett, Andrew @@aut@@ |
publishDateDaySort_date |
2023-06-07T00:00:00Z |
hierarchy_top_id |
269534512 |
id |
SPR055061990 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055061990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308064714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240308s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40620-023-01680-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055061990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40620-023-01680-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jahan, Sadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progression prediction tool</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney failure risk equation KFRE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predict progression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hale, Janine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malacova, Eva</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurst, Cameron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kark, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mallett, Andrew</subfield><subfield code="0">(orcid)0000-0002-8752-2551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nephrology</subfield><subfield code="d">Milano : Springer, 1996</subfield><subfield code="g">37(2023), 1 vom: 07. Juni, Seite 231-237</subfield><subfield code="w">(DE-627)269534512</subfield><subfield code="w">(DE-600)1475007-7</subfield><subfield code="x">1724-6059</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:231-237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40620-023-01680-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">231-237</subfield></datafield></record></collection>
|
author |
Jahan, Sadia |
spellingShingle |
Jahan, Sadia misc Progression prediction tool misc Kidney failure risk equation KFRE misc Predict progression misc Kidney failure Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
authorStr |
Jahan, Sadia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269534512 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1724-6059 |
topic_title |
Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort Progression prediction tool (dpeaa)DE-He213 Kidney failure risk equation KFRE (dpeaa)DE-He213 Predict progression (dpeaa)DE-He213 Kidney failure (dpeaa)DE-He213 |
topic |
misc Progression prediction tool misc Kidney failure risk equation KFRE misc Predict progression misc Kidney failure |
topic_unstemmed |
misc Progression prediction tool misc Kidney failure risk equation KFRE misc Predict progression misc Kidney failure |
topic_browse |
misc Progression prediction tool misc Kidney failure risk equation KFRE misc Predict progression misc Kidney failure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of nephrology |
hierarchy_parent_id |
269534512 |
hierarchy_top_title |
Journal of nephrology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269534512 (DE-600)1475007-7 |
title |
Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
ctrlnum |
(DE-627)SPR055061990 (SPR)s40620-023-01680-2-e |
title_full |
Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
author_sort |
Jahan, Sadia |
journal |
Journal of nephrology |
journalStr |
Journal of nephrology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
231 |
author_browse |
Jahan, Sadia Hale, Janine Malacova, Eva Hurst, Cameron Kark, Adrian Mallett, Andrew |
container_volume |
37 |
format_se |
Elektronische Aufsätze |
author-letter |
Jahan, Sadia |
doi_str_mv |
10.1007/s40620-023-01680-2 |
normlink |
(ORCID)0000-0002-8752-2551 |
normlink_prefix_str_mv |
(orcid)0000-0002-8752-2551 |
title_sort |
real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an australian cohort |
title_auth |
Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
abstract |
Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. © The Author(s) 2023 |
abstractGer |
Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. © The Author(s) 2023 |
abstract_unstemmed |
Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort |
url |
https://dx.doi.org/10.1007/s40620-023-01680-2 |
remote_bool |
true |
author2 |
Hale, Janine Malacova, Eva Hurst, Cameron Kark, Adrian Mallett, Andrew |
author2Str |
Hale, Janine Malacova, Eva Hurst, Cameron Kark, Adrian Mallett, Andrew |
ppnlink |
269534512 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40620-023-01680-2 |
up_date |
2024-07-04T04:01:50.505Z |
_version_ |
1803619622468976640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055061990</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240308064714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240308s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40620-023-01680-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055061990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40620-023-01680-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jahan, Sadia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real world evaluation of kidney failure risk equations in predicting progression from chronic kidney disease to kidney failure in an Australian cohort</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Chronic kidney disease progression to kidney failure is diverse, and progression may be different according to genetic aspects and settings of care. We aimed to describe kidney failure risk equation prognostic accuracy in an Australian population. Methods A retrospective cohort study was undertaken in a public hospital community-based chronic kidney disease service in Brisbane, Australia, which included a cohort of 406 adult patients with chronic kidney disease Stages 3–4 followed up over 5 years (1/1/13–1/1/18). Risk of progression to kidney failure at baseline using Kidney Failure Risk Equation models with three (eGFR/age/sex), four (add urinary-ACR) and eight variables (add serum-albumin/phosphate/bicarbonate/calcium) at 5 and 2 years were compared to actual patient outcomes. Results Of 406 patients followed up over 5 years, 71 (17.5%) developed kidney failure, while 112 died before reaching kidney failure. The overall mean difference between observed and predicted risk was 0.51% (p = 0.659), 0.93% (p = 0.602), and − 0.03% (p = 0.967) for the three-, four- and eight-variable models, respectively. There was small improvement in the receiver operating characteristic-area under the curve from three-variable to four-variable models: 0.888 (95%CI = 0.819–0.957) versus 0.916 (95%CI = 0.847–0.985). The eight-variable model showed marginal receiver operating characteristic-area under the curve improvement: 0.916 (95%CI = 0.847–0.985) versus 0.922 (95%CI = 0.853–0.991). The results were similar in predicting 2 year risk of kidney failure. Conclusions The kidney failure risk equation accurately predicted progression to kidney failure in an Australian chronic kidney disease population. Younger age, male sex, lower estimated glomerular filtration rate, higher albuminuria, diabetes mellitus, tobacco smoking and non-Caucasian ethnicity were associated with increased risk of kidney failure. Cause-specific cumulative incidence function for progression to kidney failure or death, stratified by chronic kidney disease stage, demonstrated differences within different chronic kidney disease stages, highlighting the interaction between comorbidity and outcome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progression prediction tool</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney failure risk equation KFRE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predict progression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney failure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hale, Janine</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malacova, Eva</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hurst, Cameron</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kark, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mallett, Andrew</subfield><subfield code="0">(orcid)0000-0002-8752-2551</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of nephrology</subfield><subfield code="d">Milano : Springer, 1996</subfield><subfield code="g">37(2023), 1 vom: 07. Juni, Seite 231-237</subfield><subfield code="w">(DE-627)269534512</subfield><subfield code="w">(DE-600)1475007-7</subfield><subfield code="x">1724-6059</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:231-237</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40620-023-01680-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield><subfield code="h">231-237</subfield></datafield></record></collection>
|
score |
7.401124 |