Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber
Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper...
Ausführliche Beschreibung
Autor*in: |
Li, Hengyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of microbiology - Berlin : Springer, 1998, 74(2024), 1 vom: 08. März |
---|---|
Übergeordnetes Werk: |
volume:74 ; year:2024 ; number:1 ; day:08 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s13213-024-01755-w |
---|
Katalog-ID: |
SPR055075509 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055075509 | ||
003 | DE-627 | ||
005 | 20240309064728.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240309s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13213-024-01755-w |2 doi | |
035 | |a (DE-627)SPR055075509 | ||
035 | |a (SPR)s13213-024-01755-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Hengyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. | ||
650 | 4 | |a Biochar |7 (dpeaa)DE-He213 | |
650 | 4 | |a Continuous cropping obstacle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cucumber |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soil microflora |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sweet pepper |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lou, Jie |4 aut | |
700 | 1 | |a Chen, Xiaolu |4 aut | |
700 | 1 | |a Dou, Yuwei |4 aut | |
700 | 1 | |a Zhang, Dalong |4 aut | |
700 | 1 | |a Wei, Min |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of microbiology |d Berlin : Springer, 1998 |g 74(2024), 1 vom: 08. März |w (DE-627)385615434 |w (DE-600)2143009-3 |x 1869-2044 |7 nnns |
773 | 1 | 8 | |g volume:74 |g year:2024 |g number:1 |g day:08 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13213-024-01755-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 74 |j 2024 |e 1 |b 08 |c 03 |
author_variant |
h l hl j l jl x c xc y d yd d z dz m w mw |
---|---|
matchkey_str |
article:18692044:2024----::fetoseteprtabohrnolirbacmuiisngotocn |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s13213-024-01755-w doi (DE-627)SPR055075509 (SPR)s13213-024-01755-w-e DE-627 ger DE-627 rakwb eng Li, Hengyu verfasserin aut Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 Lou, Jie aut Chen, Xiaolu aut Dou, Yuwei aut Zhang, Dalong aut Wei, Min aut Enthalten in Annals of microbiology Berlin : Springer, 1998 74(2024), 1 vom: 08. März (DE-627)385615434 (DE-600)2143009-3 1869-2044 nnns volume:74 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s13213-024-01755-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2024 1 08 03 |
spelling |
10.1186/s13213-024-01755-w doi (DE-627)SPR055075509 (SPR)s13213-024-01755-w-e DE-627 ger DE-627 rakwb eng Li, Hengyu verfasserin aut Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 Lou, Jie aut Chen, Xiaolu aut Dou, Yuwei aut Zhang, Dalong aut Wei, Min aut Enthalten in Annals of microbiology Berlin : Springer, 1998 74(2024), 1 vom: 08. März (DE-627)385615434 (DE-600)2143009-3 1869-2044 nnns volume:74 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s13213-024-01755-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2024 1 08 03 |
allfields_unstemmed |
10.1186/s13213-024-01755-w doi (DE-627)SPR055075509 (SPR)s13213-024-01755-w-e DE-627 ger DE-627 rakwb eng Li, Hengyu verfasserin aut Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 Lou, Jie aut Chen, Xiaolu aut Dou, Yuwei aut Zhang, Dalong aut Wei, Min aut Enthalten in Annals of microbiology Berlin : Springer, 1998 74(2024), 1 vom: 08. März (DE-627)385615434 (DE-600)2143009-3 1869-2044 nnns volume:74 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s13213-024-01755-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2024 1 08 03 |
allfieldsGer |
10.1186/s13213-024-01755-w doi (DE-627)SPR055075509 (SPR)s13213-024-01755-w-e DE-627 ger DE-627 rakwb eng Li, Hengyu verfasserin aut Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 Lou, Jie aut Chen, Xiaolu aut Dou, Yuwei aut Zhang, Dalong aut Wei, Min aut Enthalten in Annals of microbiology Berlin : Springer, 1998 74(2024), 1 vom: 08. März (DE-627)385615434 (DE-600)2143009-3 1869-2044 nnns volume:74 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s13213-024-01755-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2024 1 08 03 |
allfieldsSound |
10.1186/s13213-024-01755-w doi (DE-627)SPR055075509 (SPR)s13213-024-01755-w-e DE-627 ger DE-627 rakwb eng Li, Hengyu verfasserin aut Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 Lou, Jie aut Chen, Xiaolu aut Dou, Yuwei aut Zhang, Dalong aut Wei, Min aut Enthalten in Annals of microbiology Berlin : Springer, 1998 74(2024), 1 vom: 08. März (DE-627)385615434 (DE-600)2143009-3 1869-2044 nnns volume:74 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s13213-024-01755-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 74 2024 1 08 03 |
language |
English |
source |
Enthalten in Annals of microbiology 74(2024), 1 vom: 08. März volume:74 year:2024 number:1 day:08 month:03 |
sourceStr |
Enthalten in Annals of microbiology 74(2024), 1 vom: 08. März volume:74 year:2024 number:1 day:08 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biochar Continuous cropping obstacle Cucumber Soil microflora Sweet pepper |
isfreeaccess_bool |
true |
container_title |
Annals of microbiology |
authorswithroles_txt_mv |
Li, Hengyu @@aut@@ Lou, Jie @@aut@@ Chen, Xiaolu @@aut@@ Dou, Yuwei @@aut@@ Zhang, Dalong @@aut@@ Wei, Min @@aut@@ |
publishDateDaySort_date |
2024-03-08T00:00:00Z |
hierarchy_top_id |
385615434 |
id |
SPR055075509 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055075509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240309064728.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240309s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13213-024-01755-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055075509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13213-024-01755-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous cropping obstacle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cucumber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil microflora</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sweet pepper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaolu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dou, Yuwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dalong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of microbiology</subfield><subfield code="d">Berlin : Springer, 1998</subfield><subfield code="g">74(2024), 1 vom: 08. März</subfield><subfield code="w">(DE-627)385615434</subfield><subfield code="w">(DE-600)2143009-3</subfield><subfield code="x">1869-2044</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13213-024-01755-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Li, Hengyu |
spellingShingle |
Li, Hengyu misc Biochar misc Continuous cropping obstacle misc Cucumber misc Soil microflora misc Sweet pepper Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
authorStr |
Li, Hengyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385615434 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1869-2044 |
topic_title |
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber Biochar (dpeaa)DE-He213 Continuous cropping obstacle (dpeaa)DE-He213 Cucumber (dpeaa)DE-He213 Soil microflora (dpeaa)DE-He213 Sweet pepper (dpeaa)DE-He213 |
topic |
misc Biochar misc Continuous cropping obstacle misc Cucumber misc Soil microflora misc Sweet pepper |
topic_unstemmed |
misc Biochar misc Continuous cropping obstacle misc Cucumber misc Soil microflora misc Sweet pepper |
topic_browse |
misc Biochar misc Continuous cropping obstacle misc Cucumber misc Soil microflora misc Sweet pepper |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of microbiology |
hierarchy_parent_id |
385615434 |
hierarchy_top_title |
Annals of microbiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)385615434 (DE-600)2143009-3 |
title |
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
ctrlnum |
(DE-627)SPR055075509 (SPR)s13213-024-01755-w-e |
title_full |
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
author_sort |
Li, Hengyu |
journal |
Annals of microbiology |
journalStr |
Annals of microbiology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Li, Hengyu Lou, Jie Chen, Xiaolu Dou, Yuwei Zhang, Dalong Wei, Min |
container_volume |
74 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Hengyu |
doi_str_mv |
10.1186/s13213-024-01755-w |
title_sort |
effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
title_auth |
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
abstract |
Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. © The Author(s) 2024 |
abstractGer |
Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. © The Author(s) 2024 |
abstract_unstemmed |
Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity. © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber |
url |
https://dx.doi.org/10.1186/s13213-024-01755-w |
remote_bool |
true |
author2 |
Lou, Jie Chen, Xiaolu Dou, Yuwei Zhang, Dalong Wei, Min |
author2Str |
Lou, Jie Chen, Xiaolu Dou, Yuwei Zhang, Dalong Wei, Min |
ppnlink |
385615434 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13213-024-01755-w |
up_date |
2024-07-04T04:04:53.749Z |
_version_ |
1803619814601654272 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055075509</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240309064728.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240309s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13213-024-01755-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055075509</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13213-024-01755-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hengyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. Methods We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. Results SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. Conclusion SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuous cropping obstacle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cucumber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil microflora</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sweet pepper</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Jie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xiaolu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dou, Yuwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dalong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Min</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of microbiology</subfield><subfield code="d">Berlin : Springer, 1998</subfield><subfield code="g">74(2024), 1 vom: 08. März</subfield><subfield code="w">(DE-627)385615434</subfield><subfield code="w">(DE-600)2143009-3</subfield><subfield code="x">1869-2044</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:74</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13213-024-01755-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">74</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4032135 |