Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study
Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial val...
Ausführliche Beschreibung
Autor*in: |
Colì, Chiara Stella [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Chemical and Biological Technologies for Agriculture - Berlin : SpringerOpen, 2014, 11(2024), 1 vom: 08. März |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2024 ; number:1 ; day:08 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s40538-024-00553-5 |
---|
Katalog-ID: |
SPR05508091X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05508091X | ||
003 | DE-627 | ||
005 | 20240309064738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240309s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40538-024-00553-5 |2 doi | |
035 | |a (DE-627)SPR05508091X | ||
035 | |a (SPR)s40538-024-00553-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Colì, Chiara Stella |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract | ||
650 | 4 | |a Metabolomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a H NMR |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multivariate statistical analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Grapes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Juice composition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Agricultural practices |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biodynamic |7 (dpeaa)DE-He213 | |
650 | 4 | |a Organic |7 (dpeaa)DE-He213 | |
650 | 4 | |a Integrated |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vintages |7 (dpeaa)DE-He213 | |
700 | 1 | |a Girelli, Chiara Roberta |4 aut | |
700 | 1 | |a Cesari, Gianluigi |4 aut | |
700 | 1 | |a Hussain, Mudassar |4 aut | |
700 | 1 | |a Fanizzi, Francesco Paolo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chemical and Biological Technologies for Agriculture |d Berlin : SpringerOpen, 2014 |g 11(2024), 1 vom: 08. März |w (DE-627)78156820X |w (DE-600)2762782-2 |x 2196-5641 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2024 |g number:1 |g day:08 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40538-024-00553-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2024 |e 1 |b 08 |c 03 |
author_variant |
c s c cs csc c r g cr crg g c gc m h mh f p f fp fpf |
---|---|
matchkey_str |
article:21965641:2024----::idnmcraiadnertdgiutrefcsnvtlaalgaejievr3ereidxeietnh |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s40538-024-00553-5 doi (DE-627)SPR05508091X (SPR)s40538-024-00553-5-e DE-627 ger DE-627 rakwb eng Colì, Chiara Stella verfasserin aut Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 Girelli, Chiara Roberta aut Cesari, Gianluigi aut Hussain, Mudassar aut Fanizzi, Francesco Paolo aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 11(2024), 1 vom: 08. März (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:11 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s40538-024-00553-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 08 03 |
spelling |
10.1186/s40538-024-00553-5 doi (DE-627)SPR05508091X (SPR)s40538-024-00553-5-e DE-627 ger DE-627 rakwb eng Colì, Chiara Stella verfasserin aut Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 Girelli, Chiara Roberta aut Cesari, Gianluigi aut Hussain, Mudassar aut Fanizzi, Francesco Paolo aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 11(2024), 1 vom: 08. März (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:11 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s40538-024-00553-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 08 03 |
allfields_unstemmed |
10.1186/s40538-024-00553-5 doi (DE-627)SPR05508091X (SPR)s40538-024-00553-5-e DE-627 ger DE-627 rakwb eng Colì, Chiara Stella verfasserin aut Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 Girelli, Chiara Roberta aut Cesari, Gianluigi aut Hussain, Mudassar aut Fanizzi, Francesco Paolo aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 11(2024), 1 vom: 08. März (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:11 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s40538-024-00553-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 08 03 |
allfieldsGer |
10.1186/s40538-024-00553-5 doi (DE-627)SPR05508091X (SPR)s40538-024-00553-5-e DE-627 ger DE-627 rakwb eng Colì, Chiara Stella verfasserin aut Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 Girelli, Chiara Roberta aut Cesari, Gianluigi aut Hussain, Mudassar aut Fanizzi, Francesco Paolo aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 11(2024), 1 vom: 08. März (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:11 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s40538-024-00553-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 08 03 |
allfieldsSound |
10.1186/s40538-024-00553-5 doi (DE-627)SPR05508091X (SPR)s40538-024-00553-5-e DE-627 ger DE-627 rakwb eng Colì, Chiara Stella verfasserin aut Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 Girelli, Chiara Roberta aut Cesari, Gianluigi aut Hussain, Mudassar aut Fanizzi, Francesco Paolo aut Enthalten in Chemical and Biological Technologies for Agriculture Berlin : SpringerOpen, 2014 11(2024), 1 vom: 08. März (DE-627)78156820X (DE-600)2762782-2 2196-5641 nnns volume:11 year:2024 number:1 day:08 month:03 https://dx.doi.org/10.1186/s40538-024-00553-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 08 03 |
language |
English |
source |
Enthalten in Chemical and Biological Technologies for Agriculture 11(2024), 1 vom: 08. März volume:11 year:2024 number:1 day:08 month:03 |
sourceStr |
Enthalten in Chemical and Biological Technologies for Agriculture 11(2024), 1 vom: 08. März volume:11 year:2024 number:1 day:08 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metabolomics H NMR Multivariate statistical analysis Grapes Juice composition Agricultural practices Biodynamic Organic Integrated Vintages |
isfreeaccess_bool |
true |
container_title |
Chemical and Biological Technologies for Agriculture |
authorswithroles_txt_mv |
Colì, Chiara Stella @@aut@@ Girelli, Chiara Roberta @@aut@@ Cesari, Gianluigi @@aut@@ Hussain, Mudassar @@aut@@ Fanizzi, Francesco Paolo @@aut@@ |
publishDateDaySort_date |
2024-03-08T00:00:00Z |
hierarchy_top_id |
78156820X |
id |
SPR05508091X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05508091X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240309064738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240309s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-024-00553-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05508091X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40538-024-00553-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Colì, Chiara Stella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H NMR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate statistical analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grapes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Juice composition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural practices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodynamic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vintages</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girelli, Chiara Roberta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cesari, Gianluigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hussain, Mudassar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fanizzi, Francesco Paolo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical and Biological Technologies for Agriculture</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">11(2024), 1 vom: 08. März</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">2196-5641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40538-024-00553-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Colì, Chiara Stella |
spellingShingle |
Colì, Chiara Stella misc Metabolomics misc H NMR misc Multivariate statistical analysis misc Grapes misc Juice composition misc Agricultural practices misc Biodynamic misc Organic misc Integrated misc Vintages Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
authorStr |
Colì, Chiara Stella |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)78156820X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2196-5641 |
topic_title |
Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study Metabolomics (dpeaa)DE-He213 H NMR (dpeaa)DE-He213 Multivariate statistical analysis (dpeaa)DE-He213 Grapes (dpeaa)DE-He213 Juice composition (dpeaa)DE-He213 Agricultural practices (dpeaa)DE-He213 Biodynamic (dpeaa)DE-He213 Organic (dpeaa)DE-He213 Integrated (dpeaa)DE-He213 Vintages (dpeaa)DE-He213 |
topic |
misc Metabolomics misc H NMR misc Multivariate statistical analysis misc Grapes misc Juice composition misc Agricultural practices misc Biodynamic misc Organic misc Integrated misc Vintages |
topic_unstemmed |
misc Metabolomics misc H NMR misc Multivariate statistical analysis misc Grapes misc Juice composition misc Agricultural practices misc Biodynamic misc Organic misc Integrated misc Vintages |
topic_browse |
misc Metabolomics misc H NMR misc Multivariate statistical analysis misc Grapes misc Juice composition misc Agricultural practices misc Biodynamic misc Organic misc Integrated misc Vintages |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chemical and Biological Technologies for Agriculture |
hierarchy_parent_id |
78156820X |
hierarchy_top_title |
Chemical and Biological Technologies for Agriculture |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)78156820X (DE-600)2762782-2 |
title |
Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
ctrlnum |
(DE-627)SPR05508091X (SPR)s40538-024-00553-5-e |
title_full |
Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
author_sort |
Colì, Chiara Stella |
journal |
Chemical and Biological Technologies for Agriculture |
journalStr |
Chemical and Biological Technologies for Agriculture |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Colì, Chiara Stella Girelli, Chiara Roberta Cesari, Gianluigi Hussain, Mudassar Fanizzi, Francesco Paolo |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Colì, Chiara Stella |
doi_str_mv |
10.1186/s40538-024-00553-5 |
title_sort |
biodynamic, organic and integrated agriculture effects on cv. italia table grapes juice, over a 3-year period experiment: an 1h nmr spectroscopy-based metabolomics study |
title_auth |
Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
abstract |
Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract © The Author(s) 2024 |
abstractGer |
Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract © The Author(s) 2024 |
abstract_unstemmed |
Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract © The Author(s) 2024 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study |
url |
https://dx.doi.org/10.1186/s40538-024-00553-5 |
remote_bool |
true |
author2 |
Girelli, Chiara Roberta Cesari, Gianluigi Hussain, Mudassar Fanizzi, Francesco Paolo |
author2Str |
Girelli, Chiara Roberta Cesari, Gianluigi Hussain, Mudassar Fanizzi, Francesco Paolo |
ppnlink |
78156820X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40538-024-00553-5 |
up_date |
2024-07-04T04:05:42.230Z |
_version_ |
1803619865441861632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05508091X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240309064738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240309s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40538-024-00553-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05508091X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40538-024-00553-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Colì, Chiara Stella</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biodynamic, organic and integrated agriculture effects on cv. Italia table grapes juice, over a 3-year period experiment: an 1H NMR spectroscopy-based metabolomics study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The new trend demanding for “natural” agri-food products has encouraged the application of more sustainable and eco-friendly farming methods, which limit or avoid the use of synthetic chemicals. This approach is increasing in viticulture, one of the sectors with the highest commercial value since grapes and derived products are largely consumed foodstuffs, with appreciated nutritional and sensory features. In this work, 1H Nuclear Magnetic Resonance spectroscopy (1H NMR) was applied for the metabolic profiling of cv. Italia table grapes samples, from the same origin area, cultivated with different treatments (biodynamic, organic and integrated) and collected in three subsequent vintages. Multivariate statistical analysis was performed on NMR-data with the aim of comprehensively researching the possible influences on metabolites due to the use of diverse agricultural practices. Results Both inter-annual variability (2020, 2021 and 2022 vintages) and different vineyard treatments (biodynamic, organic and integrated) resulted as significant drivers for samples differentiation in the preliminary unsupervised analysis of the (1H NMR spectra derived) metabolic profile data. Nevertheless, supervised data analyses showed that inter-vineyards variability, due to application of diverse farming methods, had a comparable discriminating effect with respect to harvesting years. Ethanol, sugars (as α-/β-glucose), organic acids (as malate) and amino acids (as arginine, leucine, glutamine) resulted the most viticultural practices-dependent metabolites. Interestingly, results from pairwise comparisons between treatments indicated the biodynamic samples with respect to the organic ones as the best-observed differentiation. This was followed by the biodynamic vs integrated and organic vs integrated samples comparisons, in decreasing discrimination order, as confirmed by the descriptiveness and predictive ability parameters of the corresponding pairwise OPLS-DA models. Conclusions Results highlighted that metabolites’ composition in cv. Italia table grapes juice is significantly affected by the use of different kinds of vineyard managements (biodynamic, organic and integrated, here investigated). Metabolomics study, here employing 1H NMR spectroscopy combined with multivariate statistical analysis, offers powerful tools to elucidate the metabolic differences among classes of samples. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H NMR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate statistical analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grapes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Juice composition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agricultural practices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biodynamic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vintages</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girelli, Chiara Roberta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cesari, Gianluigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hussain, Mudassar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fanizzi, Francesco Paolo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chemical and Biological Technologies for Agriculture</subfield><subfield code="d">Berlin : SpringerOpen, 2014</subfield><subfield code="g">11(2024), 1 vom: 08. März</subfield><subfield code="w">(DE-627)78156820X</subfield><subfield code="w">(DE-600)2762782-2</subfield><subfield code="x">2196-5641</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40538-024-00553-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.399272 |