Hybrid RNN and metaheuristic approach for modeling and optimization of seismic behavior in thin-walled rectangular hollow bridge piers

Abstract In seismic structural engineering, there is a significant issue in comprehending the behavior of thin-walled rectangular hollow bridge piers within the context of dynamic phenomena. This research aimed to investigate a complex behavior using recurrent neural networks (RNNs) in conjunction w...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Alkhawaldeh, Sawsan Mohammad Amin [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Seismic structural engineering

Recurrent neural networks (RNNs)

Charged system search (CSS)

Black hole algorithm (BHA)

Thin-walled rectangular hollow bridge piers

Metaheuristic optimization

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Asian journal of civil engineering - Cham : Springer International Publishing, 2017, 25(2023), 3 vom: 31. Okt., Seite 2399-2413

Übergeordnetes Werk:

volume:25 ; year:2023 ; number:3 ; day:31 ; month:10 ; pages:2399-2413

Links:

Volltext

DOI / URN:

10.1007/s42107-023-00915-8

Katalog-ID:

SPR05508138X

Nicht das Richtige dabei?

Schreiben Sie uns!