Time-varying graph learning from smooth and stationary graph signals with hidden nodes

Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a s...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ye, Rong [verfasserIn]

Jiang, Xue-Qin

Feng, Hui

Wang, Jian

Qiu, Runhe

Hou, Xinxin

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Graph signal processing

Graph learning

Time-varying graphs

Hidden nodes

Graph stationary

Column-sparsity

Anmerkung:

© The Author(s) 2024

Übergeordnetes Werk:

Enthalten in: EURASIP journal on advances in signal processing - Springer International Publishing, 2007, 2024(2024), 1 vom: 13. März

Übergeordnetes Werk:

volume:2024 ; year:2024 ; number:1 ; day:13 ; month:03

Links:

Volltext

DOI / URN:

10.1186/s13634-024-01128-0

Katalog-ID:

SPR055137164

Nicht das Richtige dabei?

Schreiben Sie uns!