Time-varying graph learning from smooth and stationary graph signals with hidden nodes
Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a s...
Ausführliche Beschreibung
Autor*in: |
Ye, Rong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: EURASIP journal on advances in signal processing - Springer International Publishing, 2007, 2024(2024), 1 vom: 13. März |
---|---|
Übergeordnetes Werk: |
volume:2024 ; year:2024 ; number:1 ; day:13 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/s13634-024-01128-0 |
---|
Katalog-ID: |
SPR055137164 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055137164 | ||
003 | DE-627 | ||
005 | 20240315064821.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240315s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13634-024-01128-0 |2 doi | |
035 | |a (DE-627)SPR055137164 | ||
035 | |a (SPR)s13634-024-01128-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Ye, Rong |e verfasserin |0 (orcid)0009-0008-8704-4925 |4 aut | |
245 | 1 | 0 | |a Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. | ||
650 | 4 | |a Graph signal processing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Graph learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Time-varying graphs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hidden nodes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Graph stationary |7 (dpeaa)DE-He213 | |
650 | 4 | |a Column-sparsity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Jiang, Xue-Qin |4 aut | |
700 | 1 | |a Feng, Hui |4 aut | |
700 | 1 | |a Wang, Jian |4 aut | |
700 | 1 | |a Qiu, Runhe |4 aut | |
700 | 1 | |a Hou, Xinxin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EURASIP journal on advances in signal processing |d Springer International Publishing, 2007 |g 2024(2024), 1 vom: 13. März |w (DE-627)534054277 |w (DE-600)2364203-8 |x 1687-6180 |7 nnns |
773 | 1 | 8 | |g volume:2024 |g year:2024 |g number:1 |g day:13 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13634-024-01128-0 |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 53.73 |q VZ |
951 | |a AR | ||
952 | |d 2024 |j 2024 |e 1 |b 13 |c 03 |
author_variant |
r y ry x q j xqj h f hf j w jw r q rq x h xh |
---|---|
matchkey_str |
article:16876180:2024----::ieayngaherigrmmohnsainrgahi |
hierarchy_sort_str |
2024 |
bklnumber |
53.73 |
publishDate |
2024 |
allfields |
10.1186/s13634-024-01128-0 doi (DE-627)SPR055137164 (SPR)s13634-024-01128-0-e DE-627 ger DE-627 rakwb eng 620 VZ 53.73 bkl Ye, Rong verfasserin (orcid)0009-0008-8704-4925 aut Time-varying graph learning from smooth and stationary graph signals with hidden nodes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 Jiang, Xue-Qin aut Feng, Hui aut Wang, Jian aut Qiu, Runhe aut Hou, Xinxin aut Enthalten in EURASIP journal on advances in signal processing Springer International Publishing, 2007 2024(2024), 1 vom: 13. März (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2024 year:2024 number:1 day:13 month:03 https://dx.doi.org/10.1186/s13634-024-01128-0 kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 VZ AR 2024 2024 1 13 03 |
spelling |
10.1186/s13634-024-01128-0 doi (DE-627)SPR055137164 (SPR)s13634-024-01128-0-e DE-627 ger DE-627 rakwb eng 620 VZ 53.73 bkl Ye, Rong verfasserin (orcid)0009-0008-8704-4925 aut Time-varying graph learning from smooth and stationary graph signals with hidden nodes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 Jiang, Xue-Qin aut Feng, Hui aut Wang, Jian aut Qiu, Runhe aut Hou, Xinxin aut Enthalten in EURASIP journal on advances in signal processing Springer International Publishing, 2007 2024(2024), 1 vom: 13. März (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2024 year:2024 number:1 day:13 month:03 https://dx.doi.org/10.1186/s13634-024-01128-0 kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 VZ AR 2024 2024 1 13 03 |
allfields_unstemmed |
10.1186/s13634-024-01128-0 doi (DE-627)SPR055137164 (SPR)s13634-024-01128-0-e DE-627 ger DE-627 rakwb eng 620 VZ 53.73 bkl Ye, Rong verfasserin (orcid)0009-0008-8704-4925 aut Time-varying graph learning from smooth and stationary graph signals with hidden nodes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 Jiang, Xue-Qin aut Feng, Hui aut Wang, Jian aut Qiu, Runhe aut Hou, Xinxin aut Enthalten in EURASIP journal on advances in signal processing Springer International Publishing, 2007 2024(2024), 1 vom: 13. März (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2024 year:2024 number:1 day:13 month:03 https://dx.doi.org/10.1186/s13634-024-01128-0 kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 VZ AR 2024 2024 1 13 03 |
allfieldsGer |
10.1186/s13634-024-01128-0 doi (DE-627)SPR055137164 (SPR)s13634-024-01128-0-e DE-627 ger DE-627 rakwb eng 620 VZ 53.73 bkl Ye, Rong verfasserin (orcid)0009-0008-8704-4925 aut Time-varying graph learning from smooth and stationary graph signals with hidden nodes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 Jiang, Xue-Qin aut Feng, Hui aut Wang, Jian aut Qiu, Runhe aut Hou, Xinxin aut Enthalten in EURASIP journal on advances in signal processing Springer International Publishing, 2007 2024(2024), 1 vom: 13. März (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2024 year:2024 number:1 day:13 month:03 https://dx.doi.org/10.1186/s13634-024-01128-0 kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 VZ AR 2024 2024 1 13 03 |
allfieldsSound |
10.1186/s13634-024-01128-0 doi (DE-627)SPR055137164 (SPR)s13634-024-01128-0-e DE-627 ger DE-627 rakwb eng 620 VZ 53.73 bkl Ye, Rong verfasserin (orcid)0009-0008-8704-4925 aut Time-varying graph learning from smooth and stationary graph signals with hidden nodes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 Jiang, Xue-Qin aut Feng, Hui aut Wang, Jian aut Qiu, Runhe aut Hou, Xinxin aut Enthalten in EURASIP journal on advances in signal processing Springer International Publishing, 2007 2024(2024), 1 vom: 13. März (DE-627)534054277 (DE-600)2364203-8 1687-6180 nnns volume:2024 year:2024 number:1 day:13 month:03 https://dx.doi.org/10.1186/s13634-024-01128-0 kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 53.73 VZ AR 2024 2024 1 13 03 |
language |
English |
source |
Enthalten in EURASIP journal on advances in signal processing 2024(2024), 1 vom: 13. März volume:2024 year:2024 number:1 day:13 month:03 |
sourceStr |
Enthalten in EURASIP journal on advances in signal processing 2024(2024), 1 vom: 13. März volume:2024 year:2024 number:1 day:13 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Graph signal processing Graph learning Time-varying graphs Hidden nodes Graph stationary Column-sparsity |
dewey-raw |
620 |
isfreeaccess_bool |
true |
container_title |
EURASIP journal on advances in signal processing |
authorswithroles_txt_mv |
Ye, Rong @@aut@@ Jiang, Xue-Qin @@aut@@ Feng, Hui @@aut@@ Wang, Jian @@aut@@ Qiu, Runhe @@aut@@ Hou, Xinxin @@aut@@ |
publishDateDaySort_date |
2024-03-13T00:00:00Z |
hierarchy_top_id |
534054277 |
dewey-sort |
3620 |
id |
SPR055137164 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055137164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240315064821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240315s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13634-024-01128-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055137164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13634-024-01128-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ye, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0008-8704-4925</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-varying graph learning from smooth and stationary graph signals with hidden nodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph signal processing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying graphs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden nodes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph stationary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Column-sparsity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Xue-Qin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Runhe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Xinxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Springer International Publishing, 2007</subfield><subfield code="g">2024(2024), 1 vom: 13. März</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13634-024-01128-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Ye, Rong |
spellingShingle |
Ye, Rong ddc 620 bkl 53.73 misc Graph signal processing misc Graph learning misc Time-varying graphs misc Hidden nodes misc Graph stationary misc Column-sparsity Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
authorStr |
Ye, Rong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)534054277 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-6180 |
topic_title |
620 VZ 53.73 bkl Time-varying graph learning from smooth and stationary graph signals with hidden nodes Graph signal processing (dpeaa)DE-He213 Graph learning (dpeaa)DE-He213 Time-varying graphs (dpeaa)DE-He213 Hidden nodes (dpeaa)DE-He213 Graph stationary (dpeaa)DE-He213 Column-sparsity (dpeaa)DE-He213 |
topic |
ddc 620 bkl 53.73 misc Graph signal processing misc Graph learning misc Time-varying graphs misc Hidden nodes misc Graph stationary misc Column-sparsity |
topic_unstemmed |
ddc 620 bkl 53.73 misc Graph signal processing misc Graph learning misc Time-varying graphs misc Hidden nodes misc Graph stationary misc Column-sparsity |
topic_browse |
ddc 620 bkl 53.73 misc Graph signal processing misc Graph learning misc Time-varying graphs misc Hidden nodes misc Graph stationary misc Column-sparsity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EURASIP journal on advances in signal processing |
hierarchy_parent_id |
534054277 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
EURASIP journal on advances in signal processing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)534054277 (DE-600)2364203-8 |
title |
Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
ctrlnum |
(DE-627)SPR055137164 (SPR)s13634-024-01128-0-e |
title_full |
Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
author_sort |
Ye, Rong |
journal |
EURASIP journal on advances in signal processing |
journalStr |
EURASIP journal on advances in signal processing |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Ye, Rong Jiang, Xue-Qin Feng, Hui Wang, Jian Qiu, Runhe Hou, Xinxin |
container_volume |
2024 |
class |
620 VZ 53.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ye, Rong |
doi_str_mv |
10.1186/s13634-024-01128-0 |
normlink |
(ORCID)0009-0008-8704-4925 |
normlink_prefix_str_mv |
(orcid)0009-0008-8704-4925 |
dewey-full |
620 |
title_sort |
time-varying graph learning from smooth and stationary graph signals with hidden nodes |
title_auth |
Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
abstract |
Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. © The Author(s) 2024 |
abstractGer |
Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2522 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Time-varying graph learning from smooth and stationary graph signals with hidden nodes |
url |
https://dx.doi.org/10.1186/s13634-024-01128-0 |
remote_bool |
true |
author2 |
Jiang, Xue-Qin Feng, Hui Wang, Jian Qiu, Runhe Hou, Xinxin |
author2Str |
Jiang, Xue-Qin Feng, Hui Wang, Jian Qiu, Runhe Hou, Xinxin |
ppnlink |
534054277 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13634-024-01128-0 |
up_date |
2024-07-03T13:36:51.845Z |
_version_ |
1803565202770231296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055137164</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240315064821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240315s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13634-024-01128-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055137164</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13634-024-01128-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ye, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0009-0008-8704-4925</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Time-varying graph learning from smooth and stationary graph signals with hidden nodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Learning graph structure from observed signals over graph is a crucial task in many graph signal processing (GSP) applications. Existing approaches focus on inferring static graph, typically assuming that all nodes are available. However, these approaches ignore the situation where only a subset of nodes are available from spatiotemporal measurements, and the remaining nodes are never observed due to application-specific constraints, resulting in time-varying graph estimation accuracy declines dramatically. To handle this problem, we propose a framework that consider the presence of hidden nodes to identify time-varying graph. Specifically, we assume that the graph signals are smooth and stationary on the graphs and only a small number of edges are allowed to change between two consecutive graphs. With these assumptions, we present a challenging time-varying graph inference problem, which models the influence of hidden nodes in terms of estimating the graph-shift operator matrices that have a form of graph Laplacian. Moreover, we emphasize similar edge pattern (column-sparsity) between different graphs. Finally, our method is evaluated on both synthetic and real-world data. The experimental results demonstrate the advantage of our method when compared to existing benchmarking methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph signal processing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying graphs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hidden nodes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph stationary</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Column-sparsity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Xue-Qin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Hui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiu, Runhe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Xinxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP journal on advances in signal processing</subfield><subfield code="d">Springer International Publishing, 2007</subfield><subfield code="g">2024(2024), 1 vom: 13. März</subfield><subfield code="w">(DE-627)534054277</subfield><subfield code="w">(DE-600)2364203-8</subfield><subfield code="x">1687-6180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13634-024-01128-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4015865 |