Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production
Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate healt...
Ausführliche Beschreibung
Autor*in: |
Ross, Nimel Sworna [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Biomass Conversion and Biorefinery - Springer Berlin Heidelberg, 2011, 14(2022), 7 vom: 01. Juli, Seite 8693-8710 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2022 ; number:7 ; day:01 ; month:07 ; pages:8693-8710 |
Links: |
---|
DOI / URN: |
10.1007/s13399-022-02967-3 |
---|
Katalog-ID: |
SPR055200044 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055200044 | ||
003 | DE-627 | ||
005 | 20240319064716.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240319s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13399-022-02967-3 |2 doi | |
035 | |a (DE-627)SPR055200044 | ||
035 | |a (SPR)s13399-022-02967-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
100 | 1 | |a Ross, Nimel Sworna |e verfasserin |0 (orcid)0000-0002-4016-8970 |4 aut | |
245 | 1 | 0 | |a Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. | ||
650 | 4 | |a Additive manufacturing |7 (dpeaa)DE-He213 | |
650 | 4 | |a LPBF |7 (dpeaa)DE-He213 | |
650 | 4 | |a AlSi10Mg |7 (dpeaa)DE-He213 | |
650 | 4 | |a MQL |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ananth, M. Belsam Jeba |4 aut | |
700 | 1 | |a Jafferson, J. M. |4 aut | |
700 | 1 | |a Rajeshkumar, L. |0 (orcid)0000-0003-1917-5460 |4 aut | |
700 | 1 | |a Kumar, M. Saravana |0 (orcid)0000-0001-8564-5905 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biomass Conversion and Biorefinery |d Springer Berlin Heidelberg, 2011 |g 14(2022), 7 vom: 01. Juli, Seite 8693-8710 |w (DE-627)645092843 |w (DE-600)2592298-1 |x 2190-6823 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2022 |g number:7 |g day:01 |g month:07 |g pages:8693-8710 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13399-022-02967-3 |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2022 |e 7 |b 01 |c 07 |h 8693-8710 |
author_variant |
n s r ns nsr m b j a mbj mbja j m j jm jmj l r lr m s k ms msk |
---|---|
matchkey_str |
article:21906823:2022----::efracassmnovgtbeibsdqimligfdiieyauatrdli |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s13399-022-02967-3 doi (DE-627)SPR055200044 (SPR)s13399-022-02967-3-e DE-627 ger DE-627 rakwb eng 570 VZ Ross, Nimel Sworna verfasserin (orcid)0000-0002-4016-8970 aut Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Ananth, M. Belsam Jeba aut Jafferson, J. M. aut Rajeshkumar, L. (orcid)0000-0003-1917-5460 aut Kumar, M. Saravana (orcid)0000-0001-8564-5905 aut Enthalten in Biomass Conversion and Biorefinery Springer Berlin Heidelberg, 2011 14(2022), 7 vom: 01. Juli, Seite 8693-8710 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 https://dx.doi.org/10.1007/s13399-022-02967-3 lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 7 01 07 8693-8710 |
spelling |
10.1007/s13399-022-02967-3 doi (DE-627)SPR055200044 (SPR)s13399-022-02967-3-e DE-627 ger DE-627 rakwb eng 570 VZ Ross, Nimel Sworna verfasserin (orcid)0000-0002-4016-8970 aut Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Ananth, M. Belsam Jeba aut Jafferson, J. M. aut Rajeshkumar, L. (orcid)0000-0003-1917-5460 aut Kumar, M. Saravana (orcid)0000-0001-8564-5905 aut Enthalten in Biomass Conversion and Biorefinery Springer Berlin Heidelberg, 2011 14(2022), 7 vom: 01. Juli, Seite 8693-8710 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 https://dx.doi.org/10.1007/s13399-022-02967-3 lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 7 01 07 8693-8710 |
allfields_unstemmed |
10.1007/s13399-022-02967-3 doi (DE-627)SPR055200044 (SPR)s13399-022-02967-3-e DE-627 ger DE-627 rakwb eng 570 VZ Ross, Nimel Sworna verfasserin (orcid)0000-0002-4016-8970 aut Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Ananth, M. Belsam Jeba aut Jafferson, J. M. aut Rajeshkumar, L. (orcid)0000-0003-1917-5460 aut Kumar, M. Saravana (orcid)0000-0001-8564-5905 aut Enthalten in Biomass Conversion and Biorefinery Springer Berlin Heidelberg, 2011 14(2022), 7 vom: 01. Juli, Seite 8693-8710 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 https://dx.doi.org/10.1007/s13399-022-02967-3 lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 7 01 07 8693-8710 |
allfieldsGer |
10.1007/s13399-022-02967-3 doi (DE-627)SPR055200044 (SPR)s13399-022-02967-3-e DE-627 ger DE-627 rakwb eng 570 VZ Ross, Nimel Sworna verfasserin (orcid)0000-0002-4016-8970 aut Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Ananth, M. Belsam Jeba aut Jafferson, J. M. aut Rajeshkumar, L. (orcid)0000-0003-1917-5460 aut Kumar, M. Saravana (orcid)0000-0001-8564-5905 aut Enthalten in Biomass Conversion and Biorefinery Springer Berlin Heidelberg, 2011 14(2022), 7 vom: 01. Juli, Seite 8693-8710 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 https://dx.doi.org/10.1007/s13399-022-02967-3 lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 7 01 07 8693-8710 |
allfieldsSound |
10.1007/s13399-022-02967-3 doi (DE-627)SPR055200044 (SPR)s13399-022-02967-3-e DE-627 ger DE-627 rakwb eng 570 VZ Ross, Nimel Sworna verfasserin (orcid)0000-0002-4016-8970 aut Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 Ananth, M. Belsam Jeba aut Jafferson, J. M. aut Rajeshkumar, L. (orcid)0000-0003-1917-5460 aut Kumar, M. Saravana (orcid)0000-0001-8564-5905 aut Enthalten in Biomass Conversion and Biorefinery Springer Berlin Heidelberg, 2011 14(2022), 7 vom: 01. Juli, Seite 8693-8710 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 https://dx.doi.org/10.1007/s13399-022-02967-3 lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 14 2022 7 01 07 8693-8710 |
language |
English |
source |
Enthalten in Biomass Conversion and Biorefinery 14(2022), 7 vom: 01. Juli, Seite 8693-8710 volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 |
sourceStr |
Enthalten in Biomass Conversion and Biorefinery 14(2022), 7 vom: 01. Juli, Seite 8693-8710 volume:14 year:2022 number:7 day:01 month:07 pages:8693-8710 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Additive manufacturing LPBF AlSi10Mg MQL Optimization |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Biomass Conversion and Biorefinery |
authorswithroles_txt_mv |
Ross, Nimel Sworna @@aut@@ Ananth, M. Belsam Jeba @@aut@@ Jafferson, J. M. @@aut@@ Rajeshkumar, L. @@aut@@ Kumar, M. Saravana @@aut@@ |
publishDateDaySort_date |
2022-07-01T00:00:00Z |
hierarchy_top_id |
645092843 |
dewey-sort |
3570 |
id |
SPR055200044 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055200044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240319064716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240319s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13399-022-02967-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055200044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13399-022-02967-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ross, Nimel Sworna</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4016-8970</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LPBF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AlSi10Mg</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MQL</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananth, M. Belsam Jeba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jafferson, J. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajeshkumar, L.</subfield><subfield code="0">(orcid)0000-0003-1917-5460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, M. Saravana</subfield><subfield code="0">(orcid)0000-0001-8564-5905</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomass Conversion and Biorefinery</subfield><subfield code="d">Springer Berlin Heidelberg, 2011</subfield><subfield code="g">14(2022), 7 vom: 01. Juli, Seite 8693-8710</subfield><subfield code="w">(DE-627)645092843</subfield><subfield code="w">(DE-600)2592298-1</subfield><subfield code="x">2190-6823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:8693-8710</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13399-022-02967-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">8693-8710</subfield></datafield></record></collection>
|
author |
Ross, Nimel Sworna |
spellingShingle |
Ross, Nimel Sworna ddc 570 misc Additive manufacturing misc LPBF misc AlSi10Mg misc MQL misc Optimization Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
authorStr |
Ross, Nimel Sworna |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)645092843 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-6823 |
topic_title |
570 VZ Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production Additive manufacturing (dpeaa)DE-He213 LPBF (dpeaa)DE-He213 AlSi10Mg (dpeaa)DE-He213 MQL (dpeaa)DE-He213 Optimization (dpeaa)DE-He213 |
topic |
ddc 570 misc Additive manufacturing misc LPBF misc AlSi10Mg misc MQL misc Optimization |
topic_unstemmed |
ddc 570 misc Additive manufacturing misc LPBF misc AlSi10Mg misc MQL misc Optimization |
topic_browse |
ddc 570 misc Additive manufacturing misc LPBF misc AlSi10Mg misc MQL misc Optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomass Conversion and Biorefinery |
hierarchy_parent_id |
645092843 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Biomass Conversion and Biorefinery |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)645092843 (DE-600)2592298-1 |
title |
Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
ctrlnum |
(DE-627)SPR055200044 (SPR)s13399-022-02967-3-e |
title_full |
Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
author_sort |
Ross, Nimel Sworna |
journal |
Biomass Conversion and Biorefinery |
journalStr |
Biomass Conversion and Biorefinery |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
8693 |
author_browse |
Ross, Nimel Sworna Ananth, M. Belsam Jeba Jafferson, J. M. Rajeshkumar, L. Kumar, M. Saravana |
container_volume |
14 |
class |
570 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Ross, Nimel Sworna |
doi_str_mv |
10.1007/s13399-022-02967-3 |
normlink |
(ORCID)0000-0002-4016-8970 (ORCID)0000-0003-1917-5460 (ORCID)0000-0001-8564-5905 |
normlink_prefix_str_mv |
(orcid)0000-0002-4016-8970 (orcid)0000-0003-1917-5460 (orcid)0000-0001-8564-5905 |
dewey-full |
570 |
title_sort |
performance assessment of vegetable oil–based mql in milling of additively manufactured alsi10mg for sustainable production |
title_auth |
Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
abstract |
Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production |
url |
https://dx.doi.org/10.1007/s13399-022-02967-3 |
remote_bool |
true |
author2 |
Ananth, M. Belsam Jeba Jafferson, J. M. Rajeshkumar, L. Kumar, M. Saravana |
author2Str |
Ananth, M. Belsam Jeba Jafferson, J. M. Rajeshkumar, L. Kumar, M. Saravana |
ppnlink |
645092843 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13399-022-02967-3 |
up_date |
2024-07-03T14:01:10.514Z |
_version_ |
1803566732299730945 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055200044</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240319064716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240319s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13399-022-02967-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055200044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13399-022-02967-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ross, Nimel Sworna</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4016-8970</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The precision of lightweight components produced during machining of aluminium alloy is critical as a reason of its high chemical reactivity to the tool metal when cutting. Mineral-based cutting fluids (CFs) used in the manufacturing industry pollute the environment and offer adequate health risks to the operators; it is vital to develop environmentally friendly machining technologies. As a corollary, vegetable oil (VO) must be used to replace mineral oil to avoid pollution. In recent decades, VO produced from raw edible sources is a reliable source for greener CF. Toxic fumes and skin irritations caused by conventional CFs are all avoided when using VO in machining. In this research, an additively manufactured AlSi10Mg specimen was machined with distinct coolants to enhance the surface trait. The mechanical performance such as tensile, hardness and wear strength were investigated to prove that the 90° oriented AlSi10Mg parts show better strength. Further, the machining of 90° oriented AlSi10Mg parts was performed to examine certain issues such as surface morphology, flank wear and cutting temperature using different cooling regimes (flood and MQL with soybean oil). As a result of heat generation in the cutting zone, the surface deteriorates and the cutter needs to be replaced often. The MQL with VO minimises the heat generated at the cutting region and lessened the roughness to 25–42% and temperature to 24–39% with flood coolant. Additionally, the microstructure under MQL cutting produced fine grains. The desirability function was employed to find the ideal cutting condition for sustainable manufacturing.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Additive manufacturing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LPBF</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AlSi10Mg</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MQL</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananth, M. Belsam Jeba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jafferson, J. M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rajeshkumar, L.</subfield><subfield code="0">(orcid)0000-0003-1917-5460</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, M. Saravana</subfield><subfield code="0">(orcid)0000-0001-8564-5905</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomass Conversion and Biorefinery</subfield><subfield code="d">Springer Berlin Heidelberg, 2011</subfield><subfield code="g">14(2022), 7 vom: 01. Juli, Seite 8693-8710</subfield><subfield code="w">(DE-627)645092843</subfield><subfield code="w">(DE-600)2592298-1</subfield><subfield code="x">2190-6823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:7</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:8693-8710</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13399-022-02967-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2022</subfield><subfield code="e">7</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">8693-8710</subfield></datafield></record></collection>
|
score |
7.399083 |