Topology of critical points in boundary matrix duals
Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical...
Ausführliche Beschreibung
Autor*in: |
Yerra, Pavan Kumar [verfasserIn] Bhamidipati, Chandrasekhar [verfasserIn] Mukherji, Sudipta [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of high energy physics - Springer Berlin Heidelberg, 1997, 2024(2024), 3 vom: 22. März |
---|---|
Übergeordnetes Werk: |
volume:2024 ; year:2024 ; number:3 ; day:22 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/JHEP03(2024)138 |
---|
Katalog-ID: |
SPR055258093 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR055258093 | ||
003 | DE-627 | ||
005 | 20240624064655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240323s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP03(2024)138 |2 doi | |
035 | |a (DE-627)SPR055258093 | ||
035 | |a (SPR)JHEP03(2024)138-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.46 |2 bkl | ||
100 | 1 | |a Yerra, Pavan Kumar |e verfasserin |0 (orcid)0000-0001-7671-2969 |4 aut | |
245 | 1 | 0 | |a Topology of critical points in boundary matrix duals |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. | ||
650 | 4 | |a AdS-CFT Correspondence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Black Holes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Matrix Models |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bhamidipati, Chandrasekhar |e verfasserin |0 (orcid)0000-0003-0236-4337 |4 aut | |
700 | 1 | |a Mukherji, Sudipta |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Springer Berlin Heidelberg, 1997 |g 2024(2024), 3 vom: 22. März |w (DE-627)320910571 |w (DE-600)2027350-2 |x 1029-8479 |7 nnns |
773 | 1 | 8 | |g volume:2024 |g year:2024 |g number:3 |g day:22 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/JHEP03(2024)138 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.46 |q VZ |
951 | |a AR | ||
952 | |d 2024 |j 2024 |e 3 |b 22 |c 03 |
author_variant |
p k y pk pky c b cb s m sm |
---|---|
matchkey_str |
article:10298479:2024----::oooyfrtclonsnona |
hierarchy_sort_str |
2024 |
bklnumber |
33.46 |
publishDate |
2024 |
allfields |
10.1007/JHEP03(2024)138 doi (DE-627)SPR055258093 (SPR)JHEP03(2024)138-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Yerra, Pavan Kumar verfasserin (orcid)0000-0001-7671-2969 aut Topology of critical points in boundary matrix duals 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 Bhamidipati, Chandrasekhar verfasserin (orcid)0000-0003-0236-4337 aut Mukherji, Sudipta verfasserin aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 3 vom: 22. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:3 day:22 month:03 https://dx.doi.org/10.1007/JHEP03(2024)138 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 3 22 03 |
spelling |
10.1007/JHEP03(2024)138 doi (DE-627)SPR055258093 (SPR)JHEP03(2024)138-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Yerra, Pavan Kumar verfasserin (orcid)0000-0001-7671-2969 aut Topology of critical points in boundary matrix duals 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 Bhamidipati, Chandrasekhar verfasserin (orcid)0000-0003-0236-4337 aut Mukherji, Sudipta verfasserin aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 3 vom: 22. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:3 day:22 month:03 https://dx.doi.org/10.1007/JHEP03(2024)138 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 3 22 03 |
allfields_unstemmed |
10.1007/JHEP03(2024)138 doi (DE-627)SPR055258093 (SPR)JHEP03(2024)138-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Yerra, Pavan Kumar verfasserin (orcid)0000-0001-7671-2969 aut Topology of critical points in boundary matrix duals 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 Bhamidipati, Chandrasekhar verfasserin (orcid)0000-0003-0236-4337 aut Mukherji, Sudipta verfasserin aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 3 vom: 22. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:3 day:22 month:03 https://dx.doi.org/10.1007/JHEP03(2024)138 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 3 22 03 |
allfieldsGer |
10.1007/JHEP03(2024)138 doi (DE-627)SPR055258093 (SPR)JHEP03(2024)138-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Yerra, Pavan Kumar verfasserin (orcid)0000-0001-7671-2969 aut Topology of critical points in boundary matrix duals 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 Bhamidipati, Chandrasekhar verfasserin (orcid)0000-0003-0236-4337 aut Mukherji, Sudipta verfasserin aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 3 vom: 22. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:3 day:22 month:03 https://dx.doi.org/10.1007/JHEP03(2024)138 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 3 22 03 |
allfieldsSound |
10.1007/JHEP03(2024)138 doi (DE-627)SPR055258093 (SPR)JHEP03(2024)138-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Yerra, Pavan Kumar verfasserin (orcid)0000-0001-7671-2969 aut Topology of critical points in boundary matrix duals 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 Bhamidipati, Chandrasekhar verfasserin (orcid)0000-0003-0236-4337 aut Mukherji, Sudipta verfasserin aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 3 vom: 22. März (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:3 day:22 month:03 https://dx.doi.org/10.1007/JHEP03(2024)138 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 3 22 03 |
language |
English |
source |
Enthalten in Journal of high energy physics 2024(2024), 3 vom: 22. März volume:2024 year:2024 number:3 day:22 month:03 |
sourceStr |
Enthalten in Journal of high energy physics 2024(2024), 3 vom: 22. März volume:2024 year:2024 number:3 day:22 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AdS-CFT Correspondence Black Holes Matrix Models |
dewey-raw |
530 |
isfreeaccess_bool |
true |
container_title |
Journal of high energy physics |
authorswithroles_txt_mv |
Yerra, Pavan Kumar @@aut@@ Bhamidipati, Chandrasekhar @@aut@@ Mukherji, Sudipta @@aut@@ |
publishDateDaySort_date |
2024-03-22T00:00:00Z |
hierarchy_top_id |
320910571 |
dewey-sort |
3530 |
id |
SPR055258093 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR055258093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240624064655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240323s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP03(2024)138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055258093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP03(2024)138-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yerra, Pavan Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7671-2969</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology of critical points in boundary matrix duals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Holes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhamidipati, Chandrasekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0236-4337</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukherji, Sudipta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 3 vom: 22. März</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP03(2024)138</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Yerra, Pavan Kumar |
spellingShingle |
Yerra, Pavan Kumar ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes misc Matrix Models Topology of critical points in boundary matrix duals |
authorStr |
Yerra, Pavan Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-8479 |
topic_title |
530 VZ 33.46 bkl Topology of critical points in boundary matrix duals AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes (dpeaa)DE-He213 Matrix Models (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes misc Matrix Models |
topic_unstemmed |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes misc Matrix Models |
topic_browse |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes misc Matrix Models |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of high energy physics |
hierarchy_parent_id |
320910571 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of high energy physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Topology of critical points in boundary matrix duals |
ctrlnum |
(DE-627)SPR055258093 (SPR)JHEP03(2024)138-e |
title_full |
Topology of critical points in boundary matrix duals |
author_sort |
Yerra, Pavan Kumar |
journal |
Journal of high energy physics |
journalStr |
Journal of high energy physics |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yerra, Pavan Kumar Bhamidipati, Chandrasekhar Mukherji, Sudipta |
container_volume |
2024 |
class |
530 VZ 33.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yerra, Pavan Kumar |
doi_str_mv |
10.1007/JHEP03(2024)138 |
normlink |
(ORCID)0000-0001-7671-2969 (ORCID)0000-0003-0236-4337 |
normlink_prefix_str_mv |
(orcid)0000-0001-7671-2969 (orcid)0000-0003-0236-4337 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
topology of critical points in boundary matrix duals |
title_auth |
Topology of critical points in boundary matrix duals |
abstract |
Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. © The Author(s) 2024 |
abstractGer |
Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Topology of critical points in boundary matrix duals |
url |
https://dx.doi.org/10.1007/JHEP03(2024)138 |
remote_bool |
true |
author2 |
Bhamidipati, Chandrasekhar Mukherji, Sudipta |
author2Str |
Bhamidipati, Chandrasekhar Mukherji, Sudipta |
ppnlink |
320910571 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP03(2024)138 |
up_date |
2024-07-03T14:24:40.054Z |
_version_ |
1803568210306400256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR055258093</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240624064655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240323s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP03(2024)138</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055258093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP03(2024)138-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yerra, Pavan Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7671-2969</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology of critical points in boundary matrix duals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Computation of topological charges of the Schwarzschild and charged black holes in AdS in canonical and grand canonical ensembles allows for a classification of the phase transition points via the Bragg-Williams off-shell free energy. We attempt a topological classification of the critical points and the equilibrium phases of the dual gauge theory via a phenomenological matrix model, which captures the features of the $$\mathcal{N}$$ = 4, SU(N) Super Yang-Mills theory on S3 at finite temperature at large N. With minimal modification of parameters, critical points of the matrix model at finite chemical potential can be classified as well. The topological charges of locally stable and unstable dynamical phases of the system turn out to be opposite to each other, totalling to zero, and this matches the analysis in the bulk.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Holes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix Models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhamidipati, Chandrasekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0236-4337</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mukherji, Sudipta</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 3 vom: 22. März</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP03(2024)138</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">3</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.401946 |