A General Paradigm with Detail-Preserving Conditional Invertible Network for Image Fusion

Abstract Existing deep learning techniques for image fusion either learn image mapping (LIM) directly, which renders them ineffective at preserving details due to the equal consideration to each pixel, or learn detail mapping (LDM), which only attains a limited level of performance because only deta...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Wu [verfasserIn]

Deng, Liang-Jian

Ran, Ran

Vivone, Gemine

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Image fusion

Invertible network

Detail preservation

Pansharpening

Hyperspectral and multispectral image fusion

Infrared and visible image fusion

Remote sensing

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: International journal of computer vision - Springer US, 1987, 132(2023), 4 vom: 23. Okt., Seite 1029-1054

Übergeordnetes Werk:

volume:132 ; year:2023 ; number:4 ; day:23 ; month:10 ; pages:1029-1054

Links:

Volltext

DOI / URN:

10.1007/s11263-023-01924-5

Katalog-ID:

SPR05530513X

Nicht das Richtige dabei?

Schreiben Sie uns!