Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest
Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between cha...
Ausführliche Beschreibung
Autor*in: |
Huang, Binbin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of soil science and plant nutrition - Springer International Publishing, 2010, 24(2024), 1 vom: 12. Feb., Seite 1534-1546 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:12 ; month:02 ; pages:1534-1546 |
Links: |
---|
DOI / URN: |
10.1007/s42729-024-01660-w |
---|
Katalog-ID: |
SPR055353991 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055353991 | ||
003 | DE-627 | ||
005 | 20240330064652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240330s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42729-024-01660-w |2 doi | |
035 | |a (DE-627)SPR055353991 | ||
035 | |a (SPR)s42729-024-01660-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 570 |q VZ |
082 | 0 | 4 | |a 580 |a 630 |q VZ |
084 | |a 48.30 |2 bkl | ||
084 | |a 58.52 |2 bkl | ||
100 | 1 | |a Huang, Binbin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. | ||
650 | 4 | |a Long-term nitrogen deposition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Precipitation reduction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Extracellular enzyme activity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ecoenzymatic stoichiometry |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temperate forest |7 (dpeaa)DE-He213 | |
700 | 1 | |a Xing, Yajuan |4 aut | |
700 | 1 | |a Luo, Wei |4 aut | |
700 | 1 | |a Yan, Guoyong |4 aut | |
700 | 1 | |a Liu, Guancheng |4 aut | |
700 | 1 | |a Wang, Xiaochun |4 aut | |
700 | 1 | |a Wang, Qinggui |0 (orcid)0000-0003-2456-5770 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of soil science and plant nutrition |d Springer International Publishing, 2010 |g 24(2024), 1 vom: 12. Feb., Seite 1534-1546 |w (DE-627)661265102 |w (DE-600)2611093-3 |x 0718-9516 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:12 |g month:02 |g pages:1534-1546 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42729-024-01660-w |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-FOR | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 48.30 |q VZ |
936 | b | k | |a 58.52 |q VZ |
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 12 |c 02 |h 1534-1546 |
author_variant |
b h bh y x yx w l wl g y gy g l gl x w xw q w qw |
---|---|
matchkey_str |
article:07189516:2024----::fetolntrntoeadtoadhogflrdcinnxrcluaezmatvtadcezm |
hierarchy_sort_str |
2024 |
bklnumber |
48.30 58.52 |
publishDate |
2024 |
allfields |
10.1007/s42729-024-01660-w doi (DE-627)SPR055353991 (SPR)s42729-024-01660-w-e DE-627 ger DE-627 rakwb eng 630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Huang, Binbin verfasserin aut Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 Xing, Yajuan aut Luo, Wei aut Yan, Guoyong aut Liu, Guancheng aut Wang, Xiaochun aut Wang, Qinggui (orcid)0000-0003-2456-5770 aut Enthalten in Journal of soil science and plant nutrition Springer International Publishing, 2010 24(2024), 1 vom: 12. Feb., Seite 1534-1546 (DE-627)661265102 (DE-600)2611093-3 0718-9516 nnns volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 https://dx.doi.org/10.1007/s42729-024-01660-w lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 48.30 VZ 58.52 VZ AR 24 2024 1 12 02 1534-1546 |
spelling |
10.1007/s42729-024-01660-w doi (DE-627)SPR055353991 (SPR)s42729-024-01660-w-e DE-627 ger DE-627 rakwb eng 630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Huang, Binbin verfasserin aut Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 Xing, Yajuan aut Luo, Wei aut Yan, Guoyong aut Liu, Guancheng aut Wang, Xiaochun aut Wang, Qinggui (orcid)0000-0003-2456-5770 aut Enthalten in Journal of soil science and plant nutrition Springer International Publishing, 2010 24(2024), 1 vom: 12. Feb., Seite 1534-1546 (DE-627)661265102 (DE-600)2611093-3 0718-9516 nnns volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 https://dx.doi.org/10.1007/s42729-024-01660-w lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 48.30 VZ 58.52 VZ AR 24 2024 1 12 02 1534-1546 |
allfields_unstemmed |
10.1007/s42729-024-01660-w doi (DE-627)SPR055353991 (SPR)s42729-024-01660-w-e DE-627 ger DE-627 rakwb eng 630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Huang, Binbin verfasserin aut Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 Xing, Yajuan aut Luo, Wei aut Yan, Guoyong aut Liu, Guancheng aut Wang, Xiaochun aut Wang, Qinggui (orcid)0000-0003-2456-5770 aut Enthalten in Journal of soil science and plant nutrition Springer International Publishing, 2010 24(2024), 1 vom: 12. Feb., Seite 1534-1546 (DE-627)661265102 (DE-600)2611093-3 0718-9516 nnns volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 https://dx.doi.org/10.1007/s42729-024-01660-w lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 48.30 VZ 58.52 VZ AR 24 2024 1 12 02 1534-1546 |
allfieldsGer |
10.1007/s42729-024-01660-w doi (DE-627)SPR055353991 (SPR)s42729-024-01660-w-e DE-627 ger DE-627 rakwb eng 630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Huang, Binbin verfasserin aut Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 Xing, Yajuan aut Luo, Wei aut Yan, Guoyong aut Liu, Guancheng aut Wang, Xiaochun aut Wang, Qinggui (orcid)0000-0003-2456-5770 aut Enthalten in Journal of soil science and plant nutrition Springer International Publishing, 2010 24(2024), 1 vom: 12. Feb., Seite 1534-1546 (DE-627)661265102 (DE-600)2611093-3 0718-9516 nnns volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 https://dx.doi.org/10.1007/s42729-024-01660-w lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 48.30 VZ 58.52 VZ AR 24 2024 1 12 02 1534-1546 |
allfieldsSound |
10.1007/s42729-024-01660-w doi (DE-627)SPR055353991 (SPR)s42729-024-01660-w-e DE-627 ger DE-627 rakwb eng 630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Huang, Binbin verfasserin aut Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 Xing, Yajuan aut Luo, Wei aut Yan, Guoyong aut Liu, Guancheng aut Wang, Xiaochun aut Wang, Qinggui (orcid)0000-0003-2456-5770 aut Enthalten in Journal of soil science and plant nutrition Springer International Publishing, 2010 24(2024), 1 vom: 12. Feb., Seite 1534-1546 (DE-627)661265102 (DE-600)2611093-3 0718-9516 nnns volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 https://dx.doi.org/10.1007/s42729-024-01660-w lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 48.30 VZ 58.52 VZ AR 24 2024 1 12 02 1534-1546 |
language |
English |
source |
Enthalten in Journal of soil science and plant nutrition 24(2024), 1 vom: 12. Feb., Seite 1534-1546 volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 |
sourceStr |
Enthalten in Journal of soil science and plant nutrition 24(2024), 1 vom: 12. Feb., Seite 1534-1546 volume:24 year:2024 number:1 day:12 month:02 pages:1534-1546 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Long-term nitrogen deposition Precipitation reduction Extracellular enzyme activity Ecoenzymatic stoichiometry Temperate forest |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Journal of soil science and plant nutrition |
authorswithroles_txt_mv |
Huang, Binbin @@aut@@ Xing, Yajuan @@aut@@ Luo, Wei @@aut@@ Yan, Guoyong @@aut@@ Liu, Guancheng @@aut@@ Wang, Xiaochun @@aut@@ Wang, Qinggui @@aut@@ |
publishDateDaySort_date |
2024-02-12T00:00:00Z |
hierarchy_top_id |
661265102 |
dewey-sort |
3630 |
id |
SPR055353991 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055353991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240330064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240330s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42729-024-01660-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055353991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42729-024-01660-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Binbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long-term nitrogen deposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extracellular enzyme activity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecoenzymatic stoichiometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperate forest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Yajuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guoyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaochun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qinggui</subfield><subfield code="0">(orcid)0000-0003-2456-5770</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of soil science and plant nutrition</subfield><subfield code="d">Springer International Publishing, 2010</subfield><subfield code="g">24(2024), 1 vom: 12. Feb., Seite 1534-1546</subfield><subfield code="w">(DE-627)661265102</subfield><subfield code="w">(DE-600)2611093-3</subfield><subfield code="x">0718-9516</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1534-1546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42729-024-01660-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.30</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.52</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield><subfield code="h">1534-1546</subfield></datafield></record></collection>
|
author |
Huang, Binbin |
spellingShingle |
Huang, Binbin ddc 630 ddc 580 bkl 48.30 bkl 58.52 misc Long-term nitrogen deposition misc Precipitation reduction misc Extracellular enzyme activity misc Ecoenzymatic stoichiometry misc Temperate forest Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
authorStr |
Huang, Binbin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)661265102 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 570 - Life sciences; biology 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0718-9516 |
topic_title |
630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest Long-term nitrogen deposition (dpeaa)DE-He213 Precipitation reduction (dpeaa)DE-He213 Extracellular enzyme activity (dpeaa)DE-He213 Ecoenzymatic stoichiometry (dpeaa)DE-He213 Temperate forest (dpeaa)DE-He213 |
topic |
ddc 630 ddc 580 bkl 48.30 bkl 58.52 misc Long-term nitrogen deposition misc Precipitation reduction misc Extracellular enzyme activity misc Ecoenzymatic stoichiometry misc Temperate forest |
topic_unstemmed |
ddc 630 ddc 580 bkl 48.30 bkl 58.52 misc Long-term nitrogen deposition misc Precipitation reduction misc Extracellular enzyme activity misc Ecoenzymatic stoichiometry misc Temperate forest |
topic_browse |
ddc 630 ddc 580 bkl 48.30 bkl 58.52 misc Long-term nitrogen deposition misc Precipitation reduction misc Extracellular enzyme activity misc Ecoenzymatic stoichiometry misc Temperate forest |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of soil science and plant nutrition |
hierarchy_parent_id |
661265102 |
dewey-tens |
630 - Agriculture 570 - Life sciences; biology 580 - Plants (Botany) |
hierarchy_top_title |
Journal of soil science and plant nutrition |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)661265102 (DE-600)2611093-3 |
title |
Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
ctrlnum |
(DE-627)SPR055353991 (SPR)s42729-024-01660-w-e |
title_full |
Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
author_sort |
Huang, Binbin |
journal |
Journal of soil science and plant nutrition |
journalStr |
Journal of soil science and plant nutrition |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
1534 |
author_browse |
Huang, Binbin Xing, Yajuan Luo, Wei Yan, Guoyong Liu, Guancheng Wang, Xiaochun Wang, Qinggui |
container_volume |
24 |
class |
630 570 VZ 580 630 VZ 48.30 bkl 58.52 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Huang, Binbin |
doi_str_mv |
10.1007/s42729-024-01660-w |
normlink |
(ORCID)0000-0003-2456-5770 |
normlink_prefix_str_mv |
(orcid)0000-0003-2456-5770 |
dewey-full |
630 570 580 |
title_sort |
effects of long-term nitrogen addition and throughfall reduction on extracellular enzyme activity and ecoenzymatic stoichiometry in a temperate forest |
title_auth |
Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
abstract |
Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management. © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-FOR SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest |
url |
https://dx.doi.org/10.1007/s42729-024-01660-w |
remote_bool |
true |
author2 |
Xing, Yajuan Luo, Wei Yan, Guoyong Liu, Guancheng Wang, Xiaochun Wang, Qinggui |
author2Str |
Xing, Yajuan Luo, Wei Yan, Guoyong Liu, Guancheng Wang, Xiaochun Wang, Qinggui |
ppnlink |
661265102 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42729-024-01660-w |
up_date |
2024-07-03T15:04:47.008Z |
_version_ |
1803570734185840640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055353991</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240330064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240330s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42729-024-01660-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055353991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42729-024-01660-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">580</subfield><subfield code="a">630</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Binbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Long-Term Nitrogen Addition and Throughfall Reduction on Extracellular Enzyme Activity and Ecoenzymatic Stoichiometry in a Temperate Forest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Soil extracellular enzymes can regulate the decomposition processes of soil organic carbon (SOC). Thus, understanding how extracellular enzyme activity (EEA) and ecoenzymatic stoichiometry respond to altered nitrogen (N) deposition and precipitation patterns may establish a link between changes in soil organic matter and microbial responses in the context of climate change. The long-term field simulation experiments including the control, N deposition (N50, 50 kg·$ ha^{−1} $·$ yr^{−1} $), throughfall reduction (TR, − 30%), and their interactions (TR + N50) were built in a temperate forest in 2009. N50 significantly increased all EEAs except leucine aminopeptidase (LAP) and acid phosphatase (ACP). In addition, TR significantly reduced other EEAs except for ACP and polyphenol oxidase (PPO). N50 mainly promotes EEAs by influenced pH, increased SOC, and microbial biomass carbon (MBC). TR inhibited EEAs mainly by reducing soil moisture content (SMC), SOC, and MBC. Furthermore, the positive effects of N50 on EEAs were offset by the negative effects of TR under the interactive of N deposition and penetration reduction. In the control, C acquisition enzyme (C-acq):N acquisition enzyme (N-acq):P acquisition enzyme (P-acq) ≈ 1:1:1, N50, and TR resulted in alterations in the ecoenzymatic stoichiometric equilibrium. Wherein, N50 reduced BG: NAG + LAP but increased BG:ACP and NAG + LAP:ACP. The effect of TR on the ecoenzymatic stoichiometric ratio showed completely opposite to N50. TR + N50 reduced all ecoenzymatic stoichiometric ratios. Our study suggests that pH, SMC, substrate quality, and microbial biomass may be the main drivers for changes in EEAs. Our results elucidate the response mechanism of extracellular enzyme activity to N deposition and precipitation reduction, providing insights into the dynamics of SOC pools in the context of global change. In addition, this study proves that N limitation rather than phosphorus limitation exists in northeast temperate forests, providing a theoretical basis for future forest management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Long-term nitrogen deposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precipitation reduction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extracellular enzyme activity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecoenzymatic stoichiometry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperate forest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Yajuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guoyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Guancheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaochun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qinggui</subfield><subfield code="0">(orcid)0000-0003-2456-5770</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of soil science and plant nutrition</subfield><subfield code="d">Springer International Publishing, 2010</subfield><subfield code="g">24(2024), 1 vom: 12. Feb., Seite 1534-1546</subfield><subfield code="w">(DE-627)661265102</subfield><subfield code="w">(DE-600)2611093-3</subfield><subfield code="x">0718-9516</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1534-1546</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42729-024-01660-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.30</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.52</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">02</subfield><subfield code="h">1534-1546</subfield></datafield></record></collection>
|
score |
7.3998127 |