Session-based recommendation by exploiting substitutable and complementary relationships from multi-behavior data

Abstract Session-based recommendation (SR) aims to dynamically recommend items to a user based on a sequence of the most recent user-item interactions. Most existing studies on SR adopt advanced deep learning methods. However, the majority only consider a special behavior type (e.g., click), while t...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wu, Huizi [verfasserIn]

Geng, Cong [verfasserIn]

Fang, Hui [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Session-based recommendation

Graph neural network

Product relationship

Substitutability and complementarity

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Data Mining and Knowledge Discovery - Springer US, 38(2023), 3 vom: 26. Dez., Seite 1193-1221

Übergeordnetes Werk:

volume:38 ; year:2023 ; number:3 ; day:26 ; month:12 ; pages:1193-1221

Links:

Volltext

DOI / URN:

10.1007/s10618-023-00994-w

Katalog-ID:

SPR055747736

Nicht das Richtige dabei?

Schreiben Sie uns!