Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern
Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the im...
Ausführliche Beschreibung
Autor*in: |
Yuan, Chuan [verfasserIn] Yue, Xiaoping [verfasserIn] Zhang, Yafeng [verfasserIn] Zhang, Yu [verfasserIn] Hu, Yanting [verfasserIn] Tang, Qiang [verfasserIn] Guo, Li [verfasserIn] Wang, Shuai [verfasserIn] Duan, Xingwu [verfasserIn] Xiang, Wenhua [verfasserIn] Wei, Xiaohua [verfasserIn] Li, Xiaoyan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Science China / Earth sciences - Science China Press, 2010, 67(2024), 5 vom: 15. März, Seite 1529-1544 |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2024 ; number:5 ; day:15 ; month:03 ; pages:1529-1544 |
Links: |
---|
DOI / URN: |
10.1007/s11430-023-1267-8 |
---|
Katalog-ID: |
SPR055749437 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR055749437 | ||
003 | DE-627 | ||
005 | 20240506081122.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240505s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11430-023-1267-8 |2 doi | |
035 | |a (DE-627)SPR055749437 | ||
035 | |a (SPR)s11430-023-1267-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a ASIEN |q DE-1a |2 fid | ||
084 | |a 6,25 |2 ssgn | ||
100 | 1 | |a Yuan, Chuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press 2024 | ||
520 | |a Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. | ||
650 | 4 | |a Ecohydrology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rainfall redistribution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nutrients transport |7 (dpeaa)DE-He213 | |
650 | 4 | |a Enrichment characteristics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Climate zones |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yue, Xiaoping |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yafeng |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yu |e verfasserin |4 aut | |
700 | 1 | |a Hu, Yanting |e verfasserin |4 aut | |
700 | 1 | |a Tang, Qiang |e verfasserin |4 aut | |
700 | 1 | |a Guo, Li |e verfasserin |4 aut | |
700 | 1 | |a Wang, Shuai |e verfasserin |4 aut | |
700 | 1 | |a Duan, Xingwu |e verfasserin |4 aut | |
700 | 1 | |a Xiang, Wenhua |e verfasserin |4 aut | |
700 | 1 | |a Wei, Xiaohua |e verfasserin |4 aut | |
700 | 1 | |a Li, Xiaoyan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science China / Earth sciences |d Science China Press, 2010 |g 67(2024), 5 vom: 15. März, Seite 1529-1544 |h Online-Ressource |w (DE-627)623182726 |w (DE-600)2546528-4 |w (DE-576)321587324 |x 1869-1897 |7 nnns |
773 | 1 | 8 | |g volume:67 |g year:2024 |g number:5 |g day:15 |g month:03 |g pages:1529-1544 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11430-023-1267-8 |m X:SPRINGER |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a FID-ASIEN | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 67 |j 2024 |e 5 |b 15 |c 03 |h 1529-1544 |
author_variant |
c y cy x y xy y z yz y z yz y h yh q t qt l g lg s w sw x d xd w x wx x w xw x l xl |
---|---|
matchkey_str |
article:18691897:2024----::uretnihetrvnyaoyanaleitiuinehns |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s11430-023-1267-8 doi (DE-627)SPR055749437 (SPR)s11430-023-1267-8-e DE-627 ger DE-627 rakwb eng 550 VZ ASIEN DE-1a fid 6,25 ssgn Yuan, Chuan verfasserin aut Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2024 Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 Yue, Xiaoping verfasserin aut Zhang, Yafeng verfasserin aut Zhang, Yu verfasserin aut Hu, Yanting verfasserin aut Tang, Qiang verfasserin aut Guo, Li verfasserin aut Wang, Shuai verfasserin aut Duan, Xingwu verfasserin aut Xiang, Wenhua verfasserin aut Wei, Xiaohua verfasserin aut Li, Xiaoyan verfasserin aut Enthalten in Science China / Earth sciences Science China Press, 2010 67(2024), 5 vom: 15. März, Seite 1529-1544 Online-Ressource (DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 1869-1897 nnns volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 https://dx.doi.org/10.1007/s11430-023-1267-8 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2024 5 15 03 1529-1544 |
spelling |
10.1007/s11430-023-1267-8 doi (DE-627)SPR055749437 (SPR)s11430-023-1267-8-e DE-627 ger DE-627 rakwb eng 550 VZ ASIEN DE-1a fid 6,25 ssgn Yuan, Chuan verfasserin aut Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2024 Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 Yue, Xiaoping verfasserin aut Zhang, Yafeng verfasserin aut Zhang, Yu verfasserin aut Hu, Yanting verfasserin aut Tang, Qiang verfasserin aut Guo, Li verfasserin aut Wang, Shuai verfasserin aut Duan, Xingwu verfasserin aut Xiang, Wenhua verfasserin aut Wei, Xiaohua verfasserin aut Li, Xiaoyan verfasserin aut Enthalten in Science China / Earth sciences Science China Press, 2010 67(2024), 5 vom: 15. März, Seite 1529-1544 Online-Ressource (DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 1869-1897 nnns volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 https://dx.doi.org/10.1007/s11430-023-1267-8 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2024 5 15 03 1529-1544 |
allfields_unstemmed |
10.1007/s11430-023-1267-8 doi (DE-627)SPR055749437 (SPR)s11430-023-1267-8-e DE-627 ger DE-627 rakwb eng 550 VZ ASIEN DE-1a fid 6,25 ssgn Yuan, Chuan verfasserin aut Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2024 Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 Yue, Xiaoping verfasserin aut Zhang, Yafeng verfasserin aut Zhang, Yu verfasserin aut Hu, Yanting verfasserin aut Tang, Qiang verfasserin aut Guo, Li verfasserin aut Wang, Shuai verfasserin aut Duan, Xingwu verfasserin aut Xiang, Wenhua verfasserin aut Wei, Xiaohua verfasserin aut Li, Xiaoyan verfasserin aut Enthalten in Science China / Earth sciences Science China Press, 2010 67(2024), 5 vom: 15. März, Seite 1529-1544 Online-Ressource (DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 1869-1897 nnns volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 https://dx.doi.org/10.1007/s11430-023-1267-8 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2024 5 15 03 1529-1544 |
allfieldsGer |
10.1007/s11430-023-1267-8 doi (DE-627)SPR055749437 (SPR)s11430-023-1267-8-e DE-627 ger DE-627 rakwb eng 550 VZ ASIEN DE-1a fid 6,25 ssgn Yuan, Chuan verfasserin aut Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2024 Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 Yue, Xiaoping verfasserin aut Zhang, Yafeng verfasserin aut Zhang, Yu verfasserin aut Hu, Yanting verfasserin aut Tang, Qiang verfasserin aut Guo, Li verfasserin aut Wang, Shuai verfasserin aut Duan, Xingwu verfasserin aut Xiang, Wenhua verfasserin aut Wei, Xiaohua verfasserin aut Li, Xiaoyan verfasserin aut Enthalten in Science China / Earth sciences Science China Press, 2010 67(2024), 5 vom: 15. März, Seite 1529-1544 Online-Ressource (DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 1869-1897 nnns volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 https://dx.doi.org/10.1007/s11430-023-1267-8 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2024 5 15 03 1529-1544 |
allfieldsSound |
10.1007/s11430-023-1267-8 doi (DE-627)SPR055749437 (SPR)s11430-023-1267-8-e DE-627 ger DE-627 rakwb eng 550 VZ ASIEN DE-1a fid 6,25 ssgn Yuan, Chuan verfasserin aut Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2024 Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 Yue, Xiaoping verfasserin aut Zhang, Yafeng verfasserin aut Zhang, Yu verfasserin aut Hu, Yanting verfasserin aut Tang, Qiang verfasserin aut Guo, Li verfasserin aut Wang, Shuai verfasserin aut Duan, Xingwu verfasserin aut Xiang, Wenhua verfasserin aut Wei, Xiaohua verfasserin aut Li, Xiaoyan verfasserin aut Enthalten in Science China / Earth sciences Science China Press, 2010 67(2024), 5 vom: 15. März, Seite 1529-1544 Online-Ressource (DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 1869-1897 nnns volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 https://dx.doi.org/10.1007/s11430-023-1267-8 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 67 2024 5 15 03 1529-1544 |
language |
English |
source |
Enthalten in Science China / Earth sciences 67(2024), 5 vom: 15. März, Seite 1529-1544 volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 |
sourceStr |
Enthalten in Science China / Earth sciences 67(2024), 5 vom: 15. März, Seite 1529-1544 volume:67 year:2024 number:5 day:15 month:03 pages:1529-1544 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ecohydrology Rainfall redistribution Nutrients transport Enrichment characteristics Climate zones |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Science China / Earth sciences |
authorswithroles_txt_mv |
Yuan, Chuan @@aut@@ Yue, Xiaoping @@aut@@ Zhang, Yafeng @@aut@@ Zhang, Yu @@aut@@ Hu, Yanting @@aut@@ Tang, Qiang @@aut@@ Guo, Li @@aut@@ Wang, Shuai @@aut@@ Duan, Xingwu @@aut@@ Xiang, Wenhua @@aut@@ Wei, Xiaohua @@aut@@ Li, Xiaoyan @@aut@@ |
publishDateDaySort_date |
2024-03-15T00:00:00Z |
hierarchy_top_id |
623182726 |
dewey-sort |
3550 |
id |
SPR055749437 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR055749437</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240506081122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240505s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-023-1267-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055749437</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-023-1267-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Chuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecohydrology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rainfall redistribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrients transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enrichment characteristics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate zones</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Xiaoping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yafeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yanting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Xingwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Wenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science China / Earth sciences</subfield><subfield code="d">Science China Press, 2010</subfield><subfield code="g">67(2024), 5 vom: 15. März, Seite 1529-1544</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)623182726</subfield><subfield code="w">(DE-600)2546528-4</subfield><subfield code="w">(DE-576)321587324</subfield><subfield code="x">1869-1897</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1529-1544</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-023-1267-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2024</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield><subfield code="h">1529-1544</subfield></datafield></record></collection>
|
author |
Yuan, Chuan |
spellingShingle |
Yuan, Chuan ddc 550 fid ASIEN ssgn 6,25 misc Ecohydrology misc Rainfall redistribution misc Nutrients transport misc Enrichment characteristics misc Climate zones Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
authorStr |
Yuan, Chuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)623182726 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1869-1897 |
topic_title |
550 VZ ASIEN DE-1a fid 6,25 ssgn Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern Ecohydrology (dpeaa)DE-He213 Rainfall redistribution (dpeaa)DE-He213 Nutrients transport (dpeaa)DE-He213 Enrichment characteristics (dpeaa)DE-He213 Climate zones (dpeaa)DE-He213 |
topic |
ddc 550 fid ASIEN ssgn 6,25 misc Ecohydrology misc Rainfall redistribution misc Nutrients transport misc Enrichment characteristics misc Climate zones |
topic_unstemmed |
ddc 550 fid ASIEN ssgn 6,25 misc Ecohydrology misc Rainfall redistribution misc Nutrients transport misc Enrichment characteristics misc Climate zones |
topic_browse |
ddc 550 fid ASIEN ssgn 6,25 misc Ecohydrology misc Rainfall redistribution misc Nutrients transport misc Enrichment characteristics misc Climate zones |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science China / Earth sciences |
hierarchy_parent_id |
623182726 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Science China / Earth sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)623182726 (DE-600)2546528-4 (DE-576)321587324 |
title |
Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
ctrlnum |
(DE-627)SPR055749437 (SPR)s11430-023-1267-8-e |
title_full |
Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
author_sort |
Yuan, Chuan |
journal |
Science China / Earth sciences |
journalStr |
Science China / Earth sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
1529 |
author_browse |
Yuan, Chuan Yue, Xiaoping Zhang, Yafeng Zhang, Yu Hu, Yanting Tang, Qiang Guo, Li Wang, Shuai Duan, Xingwu Xiang, Wenhua Wei, Xiaohua Li, Xiaoyan |
container_volume |
67 |
class |
550 VZ ASIEN DE-1a fid 6,25 ssgn |
format_se |
Elektronische Aufsätze |
author-letter |
Yuan, Chuan |
doi_str_mv |
10.1007/s11430-023-1267-8 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
nutrient enrichment driven by canopy rainfall redistribution: mechanism, quantification, and pattern |
title_auth |
Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
abstract |
Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. © Science China Press 2024 |
abstractGer |
Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. © Science China Press 2024 |
abstract_unstemmed |
Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems. © Science China Press 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER FID-ASIEN SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern |
url |
https://dx.doi.org/10.1007/s11430-023-1267-8 |
remote_bool |
true |
author2 |
Yue, Xiaoping Zhang, Yafeng Zhang, Yu Hu, Yanting Tang, Qiang Guo, Li Wang, Shuai Duan, Xingwu Xiang, Wenhua Wei, Xiaohua Li, Xiaoyan |
author2Str |
Yue, Xiaoping Zhang, Yafeng Zhang, Yu Hu, Yanting Tang, Qiang Guo, Li Wang, Shuai Duan, Xingwu Xiang, Wenhua Wei, Xiaohua Li, Xiaoyan |
ppnlink |
623182726 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11430-023-1267-8 |
up_date |
2024-07-03T17:44:56.243Z |
_version_ |
1803580810192748544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR055749437</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240506081122.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240505s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-023-1267-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055749437</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-023-1267-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ASIEN</subfield><subfield code="q">DE-1a</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">6,25</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Chuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nutrient enrichment driven by canopy rainfall redistribution: Mechanism, quantification, and pattern</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vegetation canopies intercept and redistribute rainfall into throughfall and stemflow, which transfer substantial amounts of elements into the soil, influencing soil microbial community, plant survival, and plant community succession. Despite advancements in ecohydrological research, the implication of nutrient enrichment resulting from this redistribution of rainfall by canopies remains largely unexplored. To address this gap, we conducted a systematic review of 1020 papers published between 2000 and 2022, gathering data on nutrient concentration and enrichment for critical ions (including $ K^{+} $, $ Na^{+} $, $ Ca^{2+} $, $ Mg^{2+} $, NH4+, $ Cl^{−} $, NO3− and SO42−) from the Web of Science and Chinese Knowledge Infrastructure databases. We aimed to synthesize the mechanisms, quantify the enrichments, and identify global patterns of nutrient enrichment in stemflow and throughfall across climate zones, and vegetation types and ecosystems. The results of this study indicate that stemflow exhibits, on average, 2.1 times greater ion concentration (6.13 mg $ L^{−1} $) compared to throughfall. In particular, among the investigated ions, SO42− (12.45 and 6.32 mg $ L^{−1} $) for stemflow and throughfall, respectively, and $ Cl^{−} $ (9.21 and 4.81 mg $ L^{−1} $) exhibit the highest concentrations in both rainfall redistribution components, while $ K^{+} $ (13.7 and 5.8) and $ Mg^{2+} $ (5.6 and 2.8) have the highest enrichment factors. Across climate zones, throughfall and stemflow show the lowest ion concentrations but the highest enrichment factors in extremely humid regions. Along the temperature gradient, ion concentrations are the highest in cold climates with no clear patterns observed for enrichment factors with increasing temperature. In addition, shrubs, conifers, mixed forests, and artificial ecosystems demonstrate enrichment factors 1.1 to 3.0 times greater than those of trees, broad- leaved plants, pure forests, and natural ecosystems. These findings emphasize the need for increased attentions to artificial ecosystems, such as urban and agricultural ecosystems, which often received limited research focus, especially regarding shrubs and conifers exhibiting stronger nutrients enrichment capabilities. Future investigations should integrate soil moisture analysis to better understand the impact of rainfall redistribution on the nutrient enrichment processes, patterns, and nutrient balance in global terrestrial ecosystems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecohydrology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rainfall redistribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrients transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enrichment characteristics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate zones</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yue, Xiaoping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yafeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yanting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duan, Xingwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Wenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science China / Earth sciences</subfield><subfield code="d">Science China Press, 2010</subfield><subfield code="g">67(2024), 5 vom: 15. März, Seite 1529-1544</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)623182726</subfield><subfield code="w">(DE-600)2546528-4</subfield><subfield code="w">(DE-576)321587324</subfield><subfield code="x">1869-1897</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:5</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1529-1544</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-023-1267-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-ASIEN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2024</subfield><subfield code="e">5</subfield><subfield code="b">15</subfield><subfield code="c">03</subfield><subfield code="h">1529-1544</subfield></datafield></record></collection>
|
score |
7.4016294 |