Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer
Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized li...
Ausführliche Beschreibung
Autor*in: |
Ayati, Narjess [verfasserIn] McIntosh, Lachlan [verfasserIn] Buteau, James [verfasserIn] Alipour, Ramin [verfasserIn] Pudis, Michal [verfasserIn] Daw, Nicholas [verfasserIn] Jackson, Price [verfasserIn] Hofman, Michael S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
Metastatic castration-resistant prostate cancer (mCRPC) Bayesian penalized likelihood (BPL) |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Cancer imaging - BioMed Central, 2000, 24(2024), 1 vom: 06. Mai |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:06 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s40644-024-00702-x |
---|
Katalog-ID: |
SPR055761879 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055761879 | ||
003 | DE-627 | ||
005 | 20240507064653.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240507s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40644-024-00702-x |2 doi | |
035 | |a (DE-627)SPR055761879 | ||
035 | |a (SPR)s40644-024-00702-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
100 | 1 | |a Ayati, Narjess |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. | ||
650 | 4 | |a PSMA PET/CT |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metastatic castration-resistant prostate cancer (mCRPC) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bayesian penalized likelihood (BPL) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ordered subset expectation maximization (OSEM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Image reconstruction |7 (dpeaa)DE-He213 | |
700 | 1 | |a McIntosh, Lachlan |e verfasserin |4 aut | |
700 | 1 | |a Buteau, James |e verfasserin |4 aut | |
700 | 1 | |a Alipour, Ramin |e verfasserin |4 aut | |
700 | 1 | |a Pudis, Michal |e verfasserin |4 aut | |
700 | 1 | |a Daw, Nicholas |e verfasserin |4 aut | |
700 | 1 | |a Jackson, Price |e verfasserin |4 aut | |
700 | 1 | |a Hofman, Michael S. |e verfasserin |0 (orcid)0000-0001-8622-159X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cancer imaging |d BioMed Central, 2000 |g 24(2024), 1 vom: 06. Mai |w (DE-627)36374732X |w (DE-600)2104862-9 |x 1470-7330 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:06 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40644-024-00702-x |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 06 |c 05 |
author_variant |
n a na l m lm j b jb r a ra m p mp n d nd p j pj m s h ms msh |
---|---|
matchkey_str |
article:14707330:2024----::oprsnfuniaiehlbdptaaeesn8aasa1ecuigreesbeepcainaiiainsmsaeineaielklhobleosrcinloi |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s40644-024-00702-x doi (DE-627)SPR055761879 (SPR)s40644-024-00702-x-e DE-627 ger DE-627 rakwb eng 610 VZ Ayati, Narjess verfasserin aut Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 McIntosh, Lachlan verfasserin aut Buteau, James verfasserin aut Alipour, Ramin verfasserin aut Pudis, Michal verfasserin aut Daw, Nicholas verfasserin aut Jackson, Price verfasserin aut Hofman, Michael S. verfasserin (orcid)0000-0001-8622-159X aut Enthalten in Cancer imaging BioMed Central, 2000 24(2024), 1 vom: 06. Mai (DE-627)36374732X (DE-600)2104862-9 1470-7330 nnns volume:24 year:2024 number:1 day:06 month:05 https://dx.doi.org/10.1186/s40644-024-00702-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 06 05 |
spelling |
10.1186/s40644-024-00702-x doi (DE-627)SPR055761879 (SPR)s40644-024-00702-x-e DE-627 ger DE-627 rakwb eng 610 VZ Ayati, Narjess verfasserin aut Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 McIntosh, Lachlan verfasserin aut Buteau, James verfasserin aut Alipour, Ramin verfasserin aut Pudis, Michal verfasserin aut Daw, Nicholas verfasserin aut Jackson, Price verfasserin aut Hofman, Michael S. verfasserin (orcid)0000-0001-8622-159X aut Enthalten in Cancer imaging BioMed Central, 2000 24(2024), 1 vom: 06. Mai (DE-627)36374732X (DE-600)2104862-9 1470-7330 nnns volume:24 year:2024 number:1 day:06 month:05 https://dx.doi.org/10.1186/s40644-024-00702-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 06 05 |
allfields_unstemmed |
10.1186/s40644-024-00702-x doi (DE-627)SPR055761879 (SPR)s40644-024-00702-x-e DE-627 ger DE-627 rakwb eng 610 VZ Ayati, Narjess verfasserin aut Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 McIntosh, Lachlan verfasserin aut Buteau, James verfasserin aut Alipour, Ramin verfasserin aut Pudis, Michal verfasserin aut Daw, Nicholas verfasserin aut Jackson, Price verfasserin aut Hofman, Michael S. verfasserin (orcid)0000-0001-8622-159X aut Enthalten in Cancer imaging BioMed Central, 2000 24(2024), 1 vom: 06. Mai (DE-627)36374732X (DE-600)2104862-9 1470-7330 nnns volume:24 year:2024 number:1 day:06 month:05 https://dx.doi.org/10.1186/s40644-024-00702-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 06 05 |
allfieldsGer |
10.1186/s40644-024-00702-x doi (DE-627)SPR055761879 (SPR)s40644-024-00702-x-e DE-627 ger DE-627 rakwb eng 610 VZ Ayati, Narjess verfasserin aut Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 McIntosh, Lachlan verfasserin aut Buteau, James verfasserin aut Alipour, Ramin verfasserin aut Pudis, Michal verfasserin aut Daw, Nicholas verfasserin aut Jackson, Price verfasserin aut Hofman, Michael S. verfasserin (orcid)0000-0001-8622-159X aut Enthalten in Cancer imaging BioMed Central, 2000 24(2024), 1 vom: 06. Mai (DE-627)36374732X (DE-600)2104862-9 1470-7330 nnns volume:24 year:2024 number:1 day:06 month:05 https://dx.doi.org/10.1186/s40644-024-00702-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 06 05 |
allfieldsSound |
10.1186/s40644-024-00702-x doi (DE-627)SPR055761879 (SPR)s40644-024-00702-x-e DE-627 ger DE-627 rakwb eng 610 VZ Ayati, Narjess verfasserin aut Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 McIntosh, Lachlan verfasserin aut Buteau, James verfasserin aut Alipour, Ramin verfasserin aut Pudis, Michal verfasserin aut Daw, Nicholas verfasserin aut Jackson, Price verfasserin aut Hofman, Michael S. verfasserin (orcid)0000-0001-8622-159X aut Enthalten in Cancer imaging BioMed Central, 2000 24(2024), 1 vom: 06. Mai (DE-627)36374732X (DE-600)2104862-9 1470-7330 nnns volume:24 year:2024 number:1 day:06 month:05 https://dx.doi.org/10.1186/s40644-024-00702-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2024 1 06 05 |
language |
English |
source |
Enthalten in Cancer imaging 24(2024), 1 vom: 06. Mai volume:24 year:2024 number:1 day:06 month:05 |
sourceStr |
Enthalten in Cancer imaging 24(2024), 1 vom: 06. Mai volume:24 year:2024 number:1 day:06 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
PSMA PET/CT Metastatic castration-resistant prostate cancer (mCRPC) Bayesian penalized likelihood (BPL) Ordered subset expectation maximization (OSEM) Image reconstruction |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Cancer imaging |
authorswithroles_txt_mv |
Ayati, Narjess @@aut@@ McIntosh, Lachlan @@aut@@ Buteau, James @@aut@@ Alipour, Ramin @@aut@@ Pudis, Michal @@aut@@ Daw, Nicholas @@aut@@ Jackson, Price @@aut@@ Hofman, Michael S. @@aut@@ |
publishDateDaySort_date |
2024-05-06T00:00:00Z |
hierarchy_top_id |
36374732X |
dewey-sort |
3610 |
id |
SPR055761879 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055761879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240507064653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240507s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40644-024-00702-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055761879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40644-024-00702-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ayati, Narjess</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSMA PET/CT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metastatic castration-resistant prostate cancer (mCRPC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian penalized likelihood (BPL)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered subset expectation maximization (OSEM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McIntosh, Lachlan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buteau, James</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alipour, Ramin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pudis, Michal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daw, Nicholas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jackson, Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofman, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8622-159X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cancer imaging</subfield><subfield code="d">BioMed Central, 2000</subfield><subfield code="g">24(2024), 1 vom: 06. Mai</subfield><subfield code="w">(DE-627)36374732X</subfield><subfield code="w">(DE-600)2104862-9</subfield><subfield code="x">1470-7330</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40644-024-00702-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Ayati, Narjess |
spellingShingle |
Ayati, Narjess ddc 610 misc PSMA PET/CT misc Metastatic castration-resistant prostate cancer (mCRPC) misc Bayesian penalized likelihood (BPL) misc Ordered subset expectation maximization (OSEM) misc Image reconstruction Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
authorStr |
Ayati, Narjess |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)36374732X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1470-7330 |
topic_title |
610 VZ Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer PSMA PET/CT (dpeaa)DE-He213 Metastatic castration-resistant prostate cancer (mCRPC) (dpeaa)DE-He213 Bayesian penalized likelihood (BPL) (dpeaa)DE-He213 Ordered subset expectation maximization (OSEM) (dpeaa)DE-He213 Image reconstruction (dpeaa)DE-He213 |
topic |
ddc 610 misc PSMA PET/CT misc Metastatic castration-resistant prostate cancer (mCRPC) misc Bayesian penalized likelihood (BPL) misc Ordered subset expectation maximization (OSEM) misc Image reconstruction |
topic_unstemmed |
ddc 610 misc PSMA PET/CT misc Metastatic castration-resistant prostate cancer (mCRPC) misc Bayesian penalized likelihood (BPL) misc Ordered subset expectation maximization (OSEM) misc Image reconstruction |
topic_browse |
ddc 610 misc PSMA PET/CT misc Metastatic castration-resistant prostate cancer (mCRPC) misc Bayesian penalized likelihood (BPL) misc Ordered subset expectation maximization (OSEM) misc Image reconstruction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancer imaging |
hierarchy_parent_id |
36374732X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Cancer imaging |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)36374732X (DE-600)2104862-9 |
title |
Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
ctrlnum |
(DE-627)SPR055761879 (SPR)s40644-024-00702-x-e |
title_full |
Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
author_sort |
Ayati, Narjess |
journal |
Cancer imaging |
journalStr |
Cancer imaging |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Ayati, Narjess McIntosh, Lachlan Buteau, James Alipour, Ramin Pudis, Michal Daw, Nicholas Jackson, Price Hofman, Michael S. |
container_volume |
24 |
class |
610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Ayati, Narjess |
doi_str_mv |
10.1186/s40644-024-00702-x |
normlink |
(ORCID)0000-0001-8622-159X |
normlink_prefix_str_mv |
(orcid)0000-0001-8622-159X |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
comparison of quantitative whole body pet parameters on [68ga]ga-psma-11 pet/ct using ordered subset expectation maximization (osem) vs. bayesian penalized likelihood (bpl) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
title_auth |
Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
abstract |
Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. © The Author(s) 2024 |
abstractGer |
Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. © The Author(s) 2024 |
abstract_unstemmed |
Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer |
url |
https://dx.doi.org/10.1186/s40644-024-00702-x |
remote_bool |
true |
author2 |
McIntosh, Lachlan Buteau, James Alipour, Ramin Pudis, Michal Daw, Nicholas Jackson, Price Hofman, Michael S. |
author2Str |
McIntosh, Lachlan Buteau, James Alipour, Ramin Pudis, Michal Daw, Nicholas Jackson, Price Hofman, Michael S. |
ppnlink |
36374732X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40644-024-00702-x |
up_date |
2024-07-03T17:50:10.919Z |
_version_ |
1803581140159692800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055761879</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240507064653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240507s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40644-024-00702-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055761879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40644-024-00702-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ayati, Narjess</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of quantitative whole body PET parameters on [68Ga]Ga-PSMA-11 PET/CT using ordered Subset Expectation Maximization (OSEM) vs. bayesian penalized likelihood (BPL) reconstruction algorithms in men with metastatic castration-resistant prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background PSMA PET/CT is a predictive and prognostic biomarker for determining response to [177Lu]Lu-PSMA-617 in patients with metastatic castration resistant prostate cancer (mCRPC). Thresholds defined to date may not be generalizable to newer image reconstruction algorithms. Bayesian penalized likelihood (BPL) reconstruction algorithm is a novel reconstruction algorithm that may improve contrast whilst preventing introduction of image noise. The aim of this study is to compare the quantitative parameters obtained using BPL and the Ordered Subset Expectation Maximization (OSEM) reconstruction algorithms. Methods Fifty consecutive patients with mCRPC who underwent [68Ga]Ga-PSMA-11 PET/CT using OSEM reconstruction to assess suitability for [177Lu]Lu-PSMA-617 therapy were selected. BPL algorithm was then used retrospectively to reconstruct the same PET raw data. Quantitative and volumetric measurements such as tumour standardised uptake value (SUV)max, SUVmean and Molecular Tumour Volume (MTV-PSMA) were calculated on both reconstruction methods. Results were compared (Bland-Altman, Pearson correlation coefficient) including subgroups with low and high-volume disease burdens (MTV-PSMA cut-off 40 mL). Results The SUVmax and SUVmean were higher, and MTV-PSMA was lower in the BPL reconstructed images compared to the OSEM group, with a mean difference of 8.4 (17.5%), 0.7 (8.2%) and − 21.5 mL (-3.4%), respectively. There was a strong correlation between the calculated SUVmax, SUVmean, and MTV-PSMA values in the OSEM and BPL reconstructed images (Pearson r values of 0.98, 0.99, and 1.0, respectively). No patients were reclassified from low to high volume disease or vice versa when switching from OSEM to BPL reconstruction. Conclusions [68Ga]Ga-PSMA-11 PET/CT quantitative and volumetric parameters produced by BPL and OSEM reconstruction methods are strongly correlated. Differences are proportional and small for SUVmean, which is used as a predictive biomarker. Our study suggests that both reconstruction methods are acceptable without clinical impact on quantitative or volumetric findings. For longitudinal comparison, committing to the same reconstruction method would be preferred to ensure consistency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSMA PET/CT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metastatic castration-resistant prostate cancer (mCRPC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian penalized likelihood (BPL)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordered subset expectation maximization (OSEM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image reconstruction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McIntosh, Lachlan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buteau, James</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alipour, Ramin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pudis, Michal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Daw, Nicholas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jackson, Price</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofman, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8622-159X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cancer imaging</subfield><subfield code="d">BioMed Central, 2000</subfield><subfield code="g">24(2024), 1 vom: 06. Mai</subfield><subfield code="w">(DE-627)36374732X</subfield><subfield code="w">(DE-600)2104862-9</subfield><subfield code="x">1470-7330</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40644-024-00702-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4010277 |