Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem
Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs)...
Ausführliche Beschreibung
Autor*in: |
Palanikumar, Murugan [verfasserIn] Kausar, Nasreen [verfasserIn] Pamucar, Dragan [verfasserIn] Khan, Salma [verfasserIn] Shah, Mohd Asif [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
Generalized weighted averaging |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of computational intelligence systems - Springer Netherlands, 2008, 17(2024), 1 vom: 13. Mai |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2024 ; number:1 ; day:13 ; month:05 |
Links: |
---|
DOI / URN: |
10.1007/s44196-024-00504-w |
---|
Katalog-ID: |
SPR055842453 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR055842453 | ||
003 | DE-627 | ||
005 | 20240514064751.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240514s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44196-024-00504-w |2 doi | |
035 | |a (DE-627)SPR055842453 | ||
035 | |a (SPR)s44196-024-00504-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Palanikumar, Murugan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. | ||
650 | 4 | |a Weighted averaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Weighted geometric |7 (dpeaa)DE-He213 | |
650 | 4 | |a Generalized weighted averaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Generalized weighted geometric |7 (dpeaa)DE-He213 | |
650 | 4 | |a Decision making |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kausar, Nasreen |e verfasserin |4 aut | |
700 | 1 | |a Pamucar, Dragan |e verfasserin |4 aut | |
700 | 1 | |a Khan, Salma |e verfasserin |4 aut | |
700 | 1 | |a Shah, Mohd Asif |e verfasserin |0 (orcid)0000-0002-0351-9559 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of computational intelligence systems |d Springer Netherlands, 2008 |g 17(2024), 1 vom: 13. Mai |w (DE-627)777781514 |w (DE-600)2754752-8 |x 1875-6883 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2024 |g number:1 |g day:13 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44196-024-00504-w |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2024 |e 1 |b 13 |c 05 |
author_variant |
m p mp n k nk d p dp s k sk m a s ma mas |
---|---|
matchkey_str |
article:18756883:2024----::opeptaoenomlnevlauduzageainprtrfrovn |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s44196-024-00504-w doi (DE-627)SPR055842453 (SPR)s44196-024-00504-w-e DE-627 ger DE-627 rakwb eng 004 VZ Palanikumar, Murugan verfasserin aut Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 Kausar, Nasreen verfasserin aut Pamucar, Dragan verfasserin aut Khan, Salma verfasserin aut Shah, Mohd Asif verfasserin (orcid)0000-0002-0351-9559 aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 17(2024), 1 vom: 13. Mai (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:17 year:2024 number:1 day:13 month:05 https://dx.doi.org/10.1007/s44196-024-00504-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 13 05 |
spelling |
10.1007/s44196-024-00504-w doi (DE-627)SPR055842453 (SPR)s44196-024-00504-w-e DE-627 ger DE-627 rakwb eng 004 VZ Palanikumar, Murugan verfasserin aut Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 Kausar, Nasreen verfasserin aut Pamucar, Dragan verfasserin aut Khan, Salma verfasserin aut Shah, Mohd Asif verfasserin (orcid)0000-0002-0351-9559 aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 17(2024), 1 vom: 13. Mai (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:17 year:2024 number:1 day:13 month:05 https://dx.doi.org/10.1007/s44196-024-00504-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 13 05 |
allfields_unstemmed |
10.1007/s44196-024-00504-w doi (DE-627)SPR055842453 (SPR)s44196-024-00504-w-e DE-627 ger DE-627 rakwb eng 004 VZ Palanikumar, Murugan verfasserin aut Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 Kausar, Nasreen verfasserin aut Pamucar, Dragan verfasserin aut Khan, Salma verfasserin aut Shah, Mohd Asif verfasserin (orcid)0000-0002-0351-9559 aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 17(2024), 1 vom: 13. Mai (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:17 year:2024 number:1 day:13 month:05 https://dx.doi.org/10.1007/s44196-024-00504-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 13 05 |
allfieldsGer |
10.1007/s44196-024-00504-w doi (DE-627)SPR055842453 (SPR)s44196-024-00504-w-e DE-627 ger DE-627 rakwb eng 004 VZ Palanikumar, Murugan verfasserin aut Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 Kausar, Nasreen verfasserin aut Pamucar, Dragan verfasserin aut Khan, Salma verfasserin aut Shah, Mohd Asif verfasserin (orcid)0000-0002-0351-9559 aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 17(2024), 1 vom: 13. Mai (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:17 year:2024 number:1 day:13 month:05 https://dx.doi.org/10.1007/s44196-024-00504-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 13 05 |
allfieldsSound |
10.1007/s44196-024-00504-w doi (DE-627)SPR055842453 (SPR)s44196-024-00504-w-e DE-627 ger DE-627 rakwb eng 004 VZ Palanikumar, Murugan verfasserin aut Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 Kausar, Nasreen verfasserin aut Pamucar, Dragan verfasserin aut Khan, Salma verfasserin aut Shah, Mohd Asif verfasserin (orcid)0000-0002-0351-9559 aut Enthalten in International journal of computational intelligence systems Springer Netherlands, 2008 17(2024), 1 vom: 13. Mai (DE-627)777781514 (DE-600)2754752-8 1875-6883 nnns volume:17 year:2024 number:1 day:13 month:05 https://dx.doi.org/10.1007/s44196-024-00504-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 13 05 |
language |
English |
source |
Enthalten in International journal of computational intelligence systems 17(2024), 1 vom: 13. Mai volume:17 year:2024 number:1 day:13 month:05 |
sourceStr |
Enthalten in International journal of computational intelligence systems 17(2024), 1 vom: 13. Mai volume:17 year:2024 number:1 day:13 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Weighted averaging Weighted geometric Generalized weighted averaging Generalized weighted geometric Decision making |
dewey-raw |
004 |
isfreeaccess_bool |
true |
container_title |
International journal of computational intelligence systems |
authorswithroles_txt_mv |
Palanikumar, Murugan @@aut@@ Kausar, Nasreen @@aut@@ Pamucar, Dragan @@aut@@ Khan, Salma @@aut@@ Shah, Mohd Asif @@aut@@ |
publishDateDaySort_date |
2024-05-13T00:00:00Z |
hierarchy_top_id |
777781514 |
dewey-sort |
14 |
id |
SPR055842453 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055842453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240514064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240514s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44196-024-00504-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055842453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44196-024-00504-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palanikumar, Murugan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted geometric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized weighted averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized weighted geometric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kausar, Nasreen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pamucar, Dragan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Salma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Mohd Asif</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0351-9559</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Springer Netherlands, 2008</subfield><subfield code="g">17(2024), 1 vom: 13. Mai</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44196-024-00504-w</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Palanikumar, Murugan |
spellingShingle |
Palanikumar, Murugan ddc 004 misc Weighted averaging misc Weighted geometric misc Generalized weighted averaging misc Generalized weighted geometric misc Decision making Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
authorStr |
Palanikumar, Murugan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)777781514 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1875-6883 |
topic_title |
004 VZ Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem Weighted averaging (dpeaa)DE-He213 Weighted geometric (dpeaa)DE-He213 Generalized weighted averaging (dpeaa)DE-He213 Generalized weighted geometric (dpeaa)DE-He213 Decision making (dpeaa)DE-He213 |
topic |
ddc 004 misc Weighted averaging misc Weighted geometric misc Generalized weighted averaging misc Generalized weighted geometric misc Decision making |
topic_unstemmed |
ddc 004 misc Weighted averaging misc Weighted geometric misc Generalized weighted averaging misc Generalized weighted geometric misc Decision making |
topic_browse |
ddc 004 misc Weighted averaging misc Weighted geometric misc Generalized weighted averaging misc Generalized weighted geometric misc Decision making |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of computational intelligence systems |
hierarchy_parent_id |
777781514 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
International journal of computational intelligence systems |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)777781514 (DE-600)2754752-8 |
title |
Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
ctrlnum |
(DE-627)SPR055842453 (SPR)s44196-024-00504-w-e |
title_full |
Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
author_sort |
Palanikumar, Murugan |
journal |
International journal of computational intelligence systems |
journalStr |
International journal of computational intelligence systems |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Palanikumar, Murugan Kausar, Nasreen Pamucar, Dragan Khan, Salma Shah, Mohd Asif |
container_volume |
17 |
class |
004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Palanikumar, Murugan |
doi_str_mv |
10.1007/s44196-024-00504-w |
normlink |
(ORCID)0000-0002-0351-9559 |
normlink_prefix_str_mv |
(orcid)0000-0002-0351-9559 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
complex pythagorean normal interval-valued fuzzy aggregation operators for solving medical diagnosis problem |
title_auth |
Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
abstract |
Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. © The Author(s) 2024 |
abstractGer |
Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. © The Author(s) 2024 |
abstract_unstemmed |
Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem |
url |
https://dx.doi.org/10.1007/s44196-024-00504-w |
remote_bool |
true |
author2 |
Kausar, Nasreen Pamucar, Dragan Khan, Salma Shah, Mohd Asif |
author2Str |
Kausar, Nasreen Pamucar, Dragan Khan, Salma Shah, Mohd Asif |
ppnlink |
777781514 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44196-024-00504-w |
up_date |
2024-07-03T18:23:27.857Z |
_version_ |
1803583234094661632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR055842453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240514064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240514s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44196-024-00504-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR055842453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44196-024-00504-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Palanikumar, Murugan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Pythagorean Normal Interval-Valued Fuzzy Aggregation Operators for Solving Medical Diagnosis Problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a new methodology for solving multiple-attribute decision-making problems (MADMs) using a complex Pythagorean normal interval-valued fuzzy set (CPNIVFS), which is an extended concept of a complex Pythagorean fuzzy set. Four types of different aggregating operations (AOs), including CPNIVF weighted averaging (CPNIVFWA), CPNIVF weighted geometric (CPNIVFWG), generalized CPNIVFWA (CGPNIVFWA), and generalized CPNIVFWG (CGPNIVFWG), are discussed. The scoring function, accuracy function, and operational laws of the CPNIVFS are defined. Algebraic structures, such as associative, distributive, idempotent, bounded, commutativity, and monotonicity properties, are also shown to be satisfied by complex Pythagorean normal interval-valued fuzzy numbers. Furthermore, an algorithm is proposed to solve the MADM problems based on the defined AOs. The proposed approach is then used for a medical diagnosis problem about brain tumors because computer science and machine tool technology are among the most important components of brain tumor research. The five types of brain tumors diagnosed in these patients are gliomas, meningiomas, metastases, embryonal tumors, and ependymomas. Several types of treatments are available, which are often combined as part of an overall treatment plan. Brain tumors can be treated in various ways, including surgery, radiation therapy, chemotherapy, immunotherapy, and clinical trials. Based on the comparisons and options gathered, the most suitable treatment can be chosen. In this regard, it is evident that the value of the integer $$\Game $$ plays a significant role in determining the model. The candidate models under consideration can be validated by comparing them with the previously proposed ones. The proposed technique is compared with the existing method to demonstrate its superiority and validity, and the results conclude that the former is more reliable and effective than the latter. Finally, the criteria are evaluated by expert assessments to determine the most appropriate options.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted geometric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized weighted averaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generalized weighted geometric</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kausar, Nasreen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pamucar, Dragan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Salma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shah, Mohd Asif</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0351-9559</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of computational intelligence systems</subfield><subfield code="d">Springer Netherlands, 2008</subfield><subfield code="g">17(2024), 1 vom: 13. Mai</subfield><subfield code="w">(DE-627)777781514</subfield><subfield code="w">(DE-600)2754752-8</subfield><subfield code="x">1875-6883</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44196-024-00504-w</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.401704 |