Doc-Attentive-GAN: attentive GAN for historical document denoising

Abstract Image denoising attempts to restore images that have been degraded. Historical document denoising is specially challenging because there is considerable background noise or variation in contrast and illumination in handwritten literature and the first times of the printing press. The main o...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Neji, Hala [verfasserIn]

Ben Halima, Mohamed [verfasserIn]

Nogueras-Iso, Javier [verfasserIn]

Hamdani, Tarek M. [verfasserIn]

Lacasta, Javier [verfasserIn]

Chabchoub, Habib [verfasserIn]

Alimi, Adel M. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Historical document denoising

Document image denoising

Document image binarization

Generative adversarial networks

GAN

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Multimedia tools and applications - Springer US, 1995, 83(2023), 18 vom: 17. Nov., Seite 55509-55525

Übergeordnetes Werk:

volume:83 ; year:2023 ; number:18 ; day:17 ; month:11 ; pages:55509-55525

Links:

Volltext

DOI / URN:

10.1007/s11042-023-17476-2

Katalog-ID:

SPR055862489

Nicht das Richtige dabei?

Schreiben Sie uns!