Forest Aboveground Biomass and Forest Height Estimation Over a Sub-tropical Forest Using Machine Learning Algorithm and Synthetic Aperture Radar Data

Abstract Forest aboveground biomass (AGB) is a key measurement in studying terrestrial carbon storage, carbon cycle, and climate change. Machine learning based algorithms can be applied to estimate forest AGB using remote sensing-based data. Our study utilized L-band ALOS-2/PALSAR-2 Synthetic Apertu...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ali, Noman [verfasserIn]

Khati, Unmesh [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

L-Band ALOS-2/PALSAR-2 SAR data

Aboveground biomass model

Height of forest model

AGB and height of forest model

Anmerkung:

© Indian Society of Remote Sensing 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Journal of the Indian Society of Remote Sensing - Springer India, 2008, 52(2024), 4 vom: 03. Feb., Seite 771-786

Übergeordnetes Werk:

volume:52 ; year:2024 ; number:4 ; day:03 ; month:02 ; pages:771-786

Links:

Volltext

DOI / URN:

10.1007/s12524-024-01821-5

Katalog-ID:

SPR055898696

Nicht das Richtige dabei?

Schreiben Sie uns!