Investigation of Kriging-based SAEAs’ metamodel samples for computationally expensive optimization problems

Abstract Surrogate model assisted evolutionary algorithms (SAEAs) are strategies widely applied to deal with computationally expensive optimization problems (CEOPs). These methods employ metamodels to drive an evolutionary algorithm (EA) to promising design regions where new evaluations on the true-...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Valadão, Mônica [verfasserIn]

Maravilha, André [verfasserIn]

Batista, Lucas [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Kriging model

SAEAs

Sampling strategy

Expensive problems

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Evolutionary intelligence - Springer Berlin Heidelberg, 2008, 17(2023), 3 vom: 05. Juli, Seite 1783-1799

Übergeordnetes Werk:

volume:17 ; year:2023 ; number:3 ; day:05 ; month:07 ; pages:1783-1799

Links:

Volltext

DOI / URN:

10.1007/s12065-023-00862-y

Katalog-ID:

SPR055930859

Nicht das Richtige dabei?

Schreiben Sie uns!