A Review of Physics Informed Neural Networks for Multiscale Analysis and Inverse Problems

Abstract This paper presents the fundamentals of Physics Informed Neural Networks (PINNs) and reviews literature on the methodology and application of PINNs. PINNs are universal approximators that integrates physical laws that can be described by partial differential equations (PDEs) and given data,...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Kim, Dongjin [verfasserIn]

Lee, Jaewook [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Physics informed neural networks

Forward problem

Inverse problem

Multiscale analysis

Anmerkung:

© The Author(s) under exclusive licence to Korea Multi-Scale Mechanics (KMSM) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Multiscale science and engineering - Springer Nature Singapore, 2019, 6(2024), 1 vom: 13. Feb., Seite 1-11

Übergeordnetes Werk:

volume:6 ; year:2024 ; number:1 ; day:13 ; month:02 ; pages:1-11

Links:

Volltext

DOI / URN:

10.1007/s42493-024-00106-w

Katalog-ID:

SPR056010230

Nicht das Richtige dabei?

Schreiben Sie uns!