Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli
Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiolog...
Ausführliche Beschreibung
Autor*in: |
Xia, Changyu [verfasserIn] Yan, Ruyu [verfasserIn] Liu, Chang [verfasserIn] Zhai, Junbin [verfasserIn] Zheng, Jie [verfasserIn] Chen, Wei [verfasserIn] Cao, Xiaoli [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Annals of clinical microbiology and antimicrobials - BioMed Central, 2002, 23(2024), 1 vom: 21. Juni |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2024 ; number:1 ; day:21 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12941-024-00719-x |
---|
Katalog-ID: |
SPR05631907X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05631907X | ||
003 | DE-627 | ||
005 | 20240622064725.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240622s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12941-024-00719-x |2 doi | |
035 | |a (DE-627)SPR05631907X | ||
035 | |a (SPR)s12941-024-00719-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
100 | 1 | |a Xia, Changyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. | ||
650 | 4 | |a Carbapenem-resistant |7 (dpeaa)DE-He213 | |
650 | 4 | |a NDM |7 (dpeaa)DE-He213 | |
650 | 4 | |a Serotype |7 (dpeaa)DE-He213 | |
650 | 4 | |a Virulence factors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sequence types |7 (dpeaa)DE-He213 | |
700 | 1 | |a Yan, Ruyu |e verfasserin |4 aut | |
700 | 1 | |a Liu, Chang |e verfasserin |4 aut | |
700 | 1 | |a Zhai, Junbin |e verfasserin |4 aut | |
700 | 1 | |a Zheng, Jie |e verfasserin |4 aut | |
700 | 1 | |a Chen, Wei |e verfasserin |4 aut | |
700 | 1 | |a Cao, Xiaoli |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annals of clinical microbiology and antimicrobials |d BioMed Central, 2002 |g 23(2024), 1 vom: 21. Juni |w (DE-627)359783430 |w (DE-600)2097873-X |x 1476-0711 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2024 |g number:1 |g day:21 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12941-024-00719-x |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2024 |e 1 |b 21 |c 06 |
author_variant |
c x cx r y ry c l cl j z jz j z jz w c wc x c xc |
---|---|
matchkey_str |
article:14760711:2024----::pdmooiaadeoicaatrsisflbllnma |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s12941-024-00719-x doi (DE-627)SPR05631907X (SPR)s12941-024-00719-x-e DE-627 ger DE-627 rakwb eng 610 570 VZ 15,3 ssgn PHARM DE-84 fid Xia, Changyu verfasserin aut Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 Yan, Ruyu verfasserin aut Liu, Chang verfasserin aut Zhai, Junbin verfasserin aut Zheng, Jie verfasserin aut Chen, Wei verfasserin aut Cao, Xiaoli verfasserin aut Enthalten in Annals of clinical microbiology and antimicrobials BioMed Central, 2002 23(2024), 1 vom: 21. Juni (DE-627)359783430 (DE-600)2097873-X 1476-0711 nnns volume:23 year:2024 number:1 day:21 month:06 https://dx.doi.org/10.1186/s12941-024-00719-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2024 1 21 06 |
spelling |
10.1186/s12941-024-00719-x doi (DE-627)SPR05631907X (SPR)s12941-024-00719-x-e DE-627 ger DE-627 rakwb eng 610 570 VZ 15,3 ssgn PHARM DE-84 fid Xia, Changyu verfasserin aut Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 Yan, Ruyu verfasserin aut Liu, Chang verfasserin aut Zhai, Junbin verfasserin aut Zheng, Jie verfasserin aut Chen, Wei verfasserin aut Cao, Xiaoli verfasserin aut Enthalten in Annals of clinical microbiology and antimicrobials BioMed Central, 2002 23(2024), 1 vom: 21. Juni (DE-627)359783430 (DE-600)2097873-X 1476-0711 nnns volume:23 year:2024 number:1 day:21 month:06 https://dx.doi.org/10.1186/s12941-024-00719-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2024 1 21 06 |
allfields_unstemmed |
10.1186/s12941-024-00719-x doi (DE-627)SPR05631907X (SPR)s12941-024-00719-x-e DE-627 ger DE-627 rakwb eng 610 570 VZ 15,3 ssgn PHARM DE-84 fid Xia, Changyu verfasserin aut Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 Yan, Ruyu verfasserin aut Liu, Chang verfasserin aut Zhai, Junbin verfasserin aut Zheng, Jie verfasserin aut Chen, Wei verfasserin aut Cao, Xiaoli verfasserin aut Enthalten in Annals of clinical microbiology and antimicrobials BioMed Central, 2002 23(2024), 1 vom: 21. Juni (DE-627)359783430 (DE-600)2097873-X 1476-0711 nnns volume:23 year:2024 number:1 day:21 month:06 https://dx.doi.org/10.1186/s12941-024-00719-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2024 1 21 06 |
allfieldsGer |
10.1186/s12941-024-00719-x doi (DE-627)SPR05631907X (SPR)s12941-024-00719-x-e DE-627 ger DE-627 rakwb eng 610 570 VZ 15,3 ssgn PHARM DE-84 fid Xia, Changyu verfasserin aut Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 Yan, Ruyu verfasserin aut Liu, Chang verfasserin aut Zhai, Junbin verfasserin aut Zheng, Jie verfasserin aut Chen, Wei verfasserin aut Cao, Xiaoli verfasserin aut Enthalten in Annals of clinical microbiology and antimicrobials BioMed Central, 2002 23(2024), 1 vom: 21. Juni (DE-627)359783430 (DE-600)2097873-X 1476-0711 nnns volume:23 year:2024 number:1 day:21 month:06 https://dx.doi.org/10.1186/s12941-024-00719-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2024 1 21 06 |
allfieldsSound |
10.1186/s12941-024-00719-x doi (DE-627)SPR05631907X (SPR)s12941-024-00719-x-e DE-627 ger DE-627 rakwb eng 610 570 VZ 15,3 ssgn PHARM DE-84 fid Xia, Changyu verfasserin aut Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 Yan, Ruyu verfasserin aut Liu, Chang verfasserin aut Zhai, Junbin verfasserin aut Zheng, Jie verfasserin aut Chen, Wei verfasserin aut Cao, Xiaoli verfasserin aut Enthalten in Annals of clinical microbiology and antimicrobials BioMed Central, 2002 23(2024), 1 vom: 21. Juni (DE-627)359783430 (DE-600)2097873-X 1476-0711 nnns volume:23 year:2024 number:1 day:21 month:06 https://dx.doi.org/10.1186/s12941-024-00719-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2024 1 21 06 |
language |
English |
source |
Enthalten in Annals of clinical microbiology and antimicrobials 23(2024), 1 vom: 21. Juni volume:23 year:2024 number:1 day:21 month:06 |
sourceStr |
Enthalten in Annals of clinical microbiology and antimicrobials 23(2024), 1 vom: 21. Juni volume:23 year:2024 number:1 day:21 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Carbapenem-resistant NDM Serotype Virulence factors Sequence types |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Annals of clinical microbiology and antimicrobials |
authorswithroles_txt_mv |
Xia, Changyu @@aut@@ Yan, Ruyu @@aut@@ Liu, Chang @@aut@@ Zhai, Junbin @@aut@@ Zheng, Jie @@aut@@ Chen, Wei @@aut@@ Cao, Xiaoli @@aut@@ |
publishDateDaySort_date |
2024-06-21T00:00:00Z |
hierarchy_top_id |
359783430 |
dewey-sort |
3610 |
id |
SPR05631907X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05631907X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240622064725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240622s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12941-024-00719-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05631907X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12941-024-00719-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Changyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbapenem-resistant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Serotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virulence factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequence types</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Ruyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Junbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xiaoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of clinical microbiology and antimicrobials</subfield><subfield code="d">BioMed Central, 2002</subfield><subfield code="g">23(2024), 1 vom: 21. Juni</subfield><subfield code="w">(DE-627)359783430</subfield><subfield code="w">(DE-600)2097873-X</subfield><subfield code="x">1476-0711</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12941-024-00719-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Xia, Changyu |
spellingShingle |
Xia, Changyu ddc 610 ssgn 15,3 fid PHARM misc Carbapenem-resistant misc NDM misc Serotype misc Virulence factors misc Sequence types Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
authorStr |
Xia, Changyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)359783430 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1476-0711 |
topic_title |
610 570 VZ 15,3 ssgn PHARM DE-84 fid Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli Carbapenem-resistant (dpeaa)DE-He213 NDM (dpeaa)DE-He213 Serotype (dpeaa)DE-He213 Virulence factors (dpeaa)DE-He213 Sequence types (dpeaa)DE-He213 |
topic |
ddc 610 ssgn 15,3 fid PHARM misc Carbapenem-resistant misc NDM misc Serotype misc Virulence factors misc Sequence types |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM misc Carbapenem-resistant misc NDM misc Serotype misc Virulence factors misc Sequence types |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM misc Carbapenem-resistant misc NDM misc Serotype misc Virulence factors misc Sequence types |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Annals of clinical microbiology and antimicrobials |
hierarchy_parent_id |
359783430 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Annals of clinical microbiology and antimicrobials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)359783430 (DE-600)2097873-X |
title |
Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
ctrlnum |
(DE-627)SPR05631907X (SPR)s12941-024-00719-x-e |
title_full |
Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
author_sort |
Xia, Changyu |
journal |
Annals of clinical microbiology and antimicrobials |
journalStr |
Annals of clinical microbiology and antimicrobials |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Xia, Changyu Yan, Ruyu Liu, Chang Zhai, Junbin Zheng, Jie Chen, Wei Cao, Xiaoli |
container_volume |
23 |
class |
610 570 VZ 15,3 ssgn PHARM DE-84 fid |
format_se |
Elektronische Aufsätze |
author-letter |
Xia, Changyu |
doi_str_mv |
10.1186/s12941-024-00719-x |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
epidemiological and genomic characteristics of global blandm-carrying escherichia coli |
title_auth |
Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
abstract |
Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. © The Author(s) 2024 |
abstractGer |
Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. © The Author(s) 2024 |
abstract_unstemmed |
Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli |
url |
https://dx.doi.org/10.1186/s12941-024-00719-x |
remote_bool |
true |
author2 |
Yan, Ruyu Liu, Chang Zhai, Junbin Zheng, Jie Chen, Wei Cao, Xiaoli |
author2Str |
Yan, Ruyu Liu, Chang Zhai, Junbin Zheng, Jie Chen, Wei Cao, Xiaoli |
ppnlink |
359783430 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12941-024-00719-x |
up_date |
2024-07-03T21:38:25.219Z |
_version_ |
1803595499669815296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05631907X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240622064725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240622s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12941-024-00719-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05631907X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12941-024-00719-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Changyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Epidemiological and genomic characteristics of global blaNDM-carrying Escherichia coli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Escherichia. coli is the most frequent host for New Delhi metallo-β-lactamase (NDM) which hydrolyzes almost all β-lactams except aztreonam. The worldwide spread of blaNDM-carrying E. coli heavily threatens public health. Objective This study aimed to explore the global genomic epidemiology of blaNDM- carrying E. coli isolates, providing information for preventing the dissemination of such strains. Methods Global E. coli genomes were downloaded from NCBI database and blaNDM was detected using BLASTP. Per software was used to extract meta information on hosts, resources, collection data, and countries of origin from GenBank. The sequence types (STs) and distribution of antimicrobial resistance gene (ARG) were analyzed by CLC Workbench; Plasmid replicons, serotypes and virulence genes (VFs) were analyzed by submitting the genomes to the websites. Statistical analyses were performed to access the relationships among ARGs and plasmid replicons. Results Until March 2023, 1,774 out of 33,055 isolates collected during 2003–2022 were found to contain blaNDM in total. Among them, 15 blaNDM variants were found with blaNDM-5 (74.1%) being most frequent, followed by blaNDM-1 (16.6%) and blaNDM-9 (4.6%). Among the 213 ARGs identified, 27 blaCTX-M and 39 blaTEM variants were found with blaCTX-M-15 (n = 438, 24.7%) and blaTEM-1B (n = 1092, 61.6%) being the most frequent ones, respectively. In addition, 546 (30.8%) plasmids mediated ampC genes, 508 (28.6%) exogenously acquired 16 S rRNA methyltransferase encoding genes and 262 (14.8%) mcr were also detected. Among the 232 distinct STs, ST167 (17.2%) were the most prevalent. As for plasmids, more than half of isolates contained IncFII, IncFIB and IncX3. The VF terC, gad, traT and iss as well as the serotypes O101:H9 (n = 231, 13.0%), O8:H9 (n = 115, 6.5%) and O9:H30 (n = 99, 5.6%) were frequently observed. Conclusions The study delves into the intricate relationship between plasmid types, virulence factors, and ARGs, which provides valuable insights for clinical treatment and public health interventions, and serves as a critical resource for guiding future research, surveillance, and implementation of effective strategies to address the challenges posed by blaNDM-carrying E. coli. The findings underscore the urgent need for sustained global collaboration, surveillance efforts, and antimicrobial stewardship to mitigate the impact of these highly resistant strains on public health.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbapenem-resistant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NDM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Serotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Virulence factors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequence types</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Ruyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Junbin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xiaoli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annals of clinical microbiology and antimicrobials</subfield><subfield code="d">BioMed Central, 2002</subfield><subfield code="g">23(2024), 1 vom: 21. Juni</subfield><subfield code="w">(DE-627)359783430</subfield><subfield code="w">(DE-600)2097873-X</subfield><subfield code="x">1476-0711</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12941-024-00719-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.399081 |