Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy?
Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We empl...
Ausführliche Beschreibung
Autor*in: |
Yeghaian, Melda [verfasserIn] Tareco Bucho, Teresa M. [verfasserIn] de Bruin, Melissa [verfasserIn] Schmitz, Alexander [verfasserIn] Bodalal, Zuhir [verfasserIn] Smit, Egbert F. [verfasserIn] Beets-Tan, Regina G. H. [verfasserIn] van den Broek, Daan [verfasserIn] Trebeschi, Stefano [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of cancer research and clinical oncology - Springer Berlin Heidelberg, 1904, 150(2024), 6 vom: 26. Juni |
---|---|
Übergeordnetes Werk: |
volume:150 ; year:2024 ; number:6 ; day:26 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s00432-024-05814-2 |
---|
Katalog-ID: |
SPR056366574 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR056366574 | ||
003 | DE-627 | ||
005 | 20240710064658.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240627s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00432-024-05814-2 |2 doi | |
035 | |a (DE-627)SPR056366574 | ||
035 | |a (SPR)s00432-024-05814-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.81 |2 bkl | ||
100 | 1 | |a Yeghaian, Melda |e verfasserin |4 aut | |
245 | 1 | 0 | |a Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. | ||
650 | 4 | |a Blood-based markers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Progression-free survival |7 (dpeaa)DE-He213 | |
650 | 4 | |a RECIST |7 (dpeaa)DE-He213 | |
650 | 4 | |a NSCLC |7 (dpeaa)DE-He213 | |
650 | 4 | |a Machine learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Immunotherapy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tareco Bucho, Teresa M. |e verfasserin |4 aut | |
700 | 1 | |a de Bruin, Melissa |e verfasserin |4 aut | |
700 | 1 | |a Schmitz, Alexander |e verfasserin |4 aut | |
700 | 1 | |a Bodalal, Zuhir |e verfasserin |4 aut | |
700 | 1 | |a Smit, Egbert F. |e verfasserin |4 aut | |
700 | 1 | |a Beets-Tan, Regina G. H. |e verfasserin |4 aut | |
700 | 1 | |a van den Broek, Daan |e verfasserin |4 aut | |
700 | 1 | |a Trebeschi, Stefano |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of cancer research and clinical oncology |d Springer Berlin Heidelberg, 1904 |g 150(2024), 6 vom: 26. Juni |w (DE-627)253769515 |w (DE-600)1459285-X |x 1432-1335 |7 nnns |
773 | 1 | 8 | |g volume:150 |g year:2024 |g number:6 |g day:26 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00432-024-05814-2 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_711 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.81 |q VZ |
951 | |a AR | ||
952 | |d 150 |j 2024 |e 6 |b 26 |c 06 |
author_variant |
m y my b t m t btm btmt b m d bm bmd a s as z b zb e f s ef efs r g h b t rghb rghbt d b d v dbd dbdv s t st |
---|---|
matchkey_str |
article:14321335:2024----::abodaemresrdcrcsporsinnosalelugacr |
hierarchy_sort_str |
2024 |
bklnumber |
44.81 |
publishDate |
2024 |
allfields |
10.1007/s00432-024-05814-2 doi (DE-627)SPR056366574 (SPR)s00432-024-05814-2-e DE-627 ger DE-627 rakwb eng 610 VZ 44.81 bkl Yeghaian, Melda verfasserin aut Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 Tareco Bucho, Teresa M. verfasserin aut de Bruin, Melissa verfasserin aut Schmitz, Alexander verfasserin aut Bodalal, Zuhir verfasserin aut Smit, Egbert F. verfasserin aut Beets-Tan, Regina G. H. verfasserin aut van den Broek, Daan verfasserin aut Trebeschi, Stefano verfasserin aut Enthalten in Journal of cancer research and clinical oncology Springer Berlin Heidelberg, 1904 150(2024), 6 vom: 26. Juni (DE-627)253769515 (DE-600)1459285-X 1432-1335 nnns volume:150 year:2024 number:6 day:26 month:06 https://dx.doi.org/10.1007/s00432-024-05814-2 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.81 VZ AR 150 2024 6 26 06 |
spelling |
10.1007/s00432-024-05814-2 doi (DE-627)SPR056366574 (SPR)s00432-024-05814-2-e DE-627 ger DE-627 rakwb eng 610 VZ 44.81 bkl Yeghaian, Melda verfasserin aut Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 Tareco Bucho, Teresa M. verfasserin aut de Bruin, Melissa verfasserin aut Schmitz, Alexander verfasserin aut Bodalal, Zuhir verfasserin aut Smit, Egbert F. verfasserin aut Beets-Tan, Regina G. H. verfasserin aut van den Broek, Daan verfasserin aut Trebeschi, Stefano verfasserin aut Enthalten in Journal of cancer research and clinical oncology Springer Berlin Heidelberg, 1904 150(2024), 6 vom: 26. Juni (DE-627)253769515 (DE-600)1459285-X 1432-1335 nnns volume:150 year:2024 number:6 day:26 month:06 https://dx.doi.org/10.1007/s00432-024-05814-2 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.81 VZ AR 150 2024 6 26 06 |
allfields_unstemmed |
10.1007/s00432-024-05814-2 doi (DE-627)SPR056366574 (SPR)s00432-024-05814-2-e DE-627 ger DE-627 rakwb eng 610 VZ 44.81 bkl Yeghaian, Melda verfasserin aut Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 Tareco Bucho, Teresa M. verfasserin aut de Bruin, Melissa verfasserin aut Schmitz, Alexander verfasserin aut Bodalal, Zuhir verfasserin aut Smit, Egbert F. verfasserin aut Beets-Tan, Regina G. H. verfasserin aut van den Broek, Daan verfasserin aut Trebeschi, Stefano verfasserin aut Enthalten in Journal of cancer research and clinical oncology Springer Berlin Heidelberg, 1904 150(2024), 6 vom: 26. Juni (DE-627)253769515 (DE-600)1459285-X 1432-1335 nnns volume:150 year:2024 number:6 day:26 month:06 https://dx.doi.org/10.1007/s00432-024-05814-2 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.81 VZ AR 150 2024 6 26 06 |
allfieldsGer |
10.1007/s00432-024-05814-2 doi (DE-627)SPR056366574 (SPR)s00432-024-05814-2-e DE-627 ger DE-627 rakwb eng 610 VZ 44.81 bkl Yeghaian, Melda verfasserin aut Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 Tareco Bucho, Teresa M. verfasserin aut de Bruin, Melissa verfasserin aut Schmitz, Alexander verfasserin aut Bodalal, Zuhir verfasserin aut Smit, Egbert F. verfasserin aut Beets-Tan, Regina G. H. verfasserin aut van den Broek, Daan verfasserin aut Trebeschi, Stefano verfasserin aut Enthalten in Journal of cancer research and clinical oncology Springer Berlin Heidelberg, 1904 150(2024), 6 vom: 26. Juni (DE-627)253769515 (DE-600)1459285-X 1432-1335 nnns volume:150 year:2024 number:6 day:26 month:06 https://dx.doi.org/10.1007/s00432-024-05814-2 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.81 VZ AR 150 2024 6 26 06 |
allfieldsSound |
10.1007/s00432-024-05814-2 doi (DE-627)SPR056366574 (SPR)s00432-024-05814-2-e DE-627 ger DE-627 rakwb eng 610 VZ 44.81 bkl Yeghaian, Melda verfasserin aut Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 Tareco Bucho, Teresa M. verfasserin aut de Bruin, Melissa verfasserin aut Schmitz, Alexander verfasserin aut Bodalal, Zuhir verfasserin aut Smit, Egbert F. verfasserin aut Beets-Tan, Regina G. H. verfasserin aut van den Broek, Daan verfasserin aut Trebeschi, Stefano verfasserin aut Enthalten in Journal of cancer research and clinical oncology Springer Berlin Heidelberg, 1904 150(2024), 6 vom: 26. Juni (DE-627)253769515 (DE-600)1459285-X 1432-1335 nnns volume:150 year:2024 number:6 day:26 month:06 https://dx.doi.org/10.1007/s00432-024-05814-2 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.81 VZ AR 150 2024 6 26 06 |
language |
English |
source |
Enthalten in Journal of cancer research and clinical oncology 150(2024), 6 vom: 26. Juni volume:150 year:2024 number:6 day:26 month:06 |
sourceStr |
Enthalten in Journal of cancer research and clinical oncology 150(2024), 6 vom: 26. Juni volume:150 year:2024 number:6 day:26 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Blood-based markers Progression-free survival RECIST NSCLC Machine learning Immunotherapy |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Journal of cancer research and clinical oncology |
authorswithroles_txt_mv |
Yeghaian, Melda @@aut@@ Tareco Bucho, Teresa M. @@aut@@ de Bruin, Melissa @@aut@@ Schmitz, Alexander @@aut@@ Bodalal, Zuhir @@aut@@ Smit, Egbert F. @@aut@@ Beets-Tan, Regina G. H. @@aut@@ van den Broek, Daan @@aut@@ Trebeschi, Stefano @@aut@@ |
publishDateDaySort_date |
2024-06-26T00:00:00Z |
hierarchy_top_id |
253769515 |
dewey-sort |
3610 |
id |
SPR056366574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR056366574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240710064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240627s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00432-024-05814-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056366574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00432-024-05814-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeghaian, Melda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood-based markers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progression-free survival</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RECIST</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSCLC</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tareco Bucho, Teresa M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Bruin, Melissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmitz, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bodalal, Zuhir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smit, Egbert F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beets-Tan, Regina G. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Broek, Daan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trebeschi, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cancer research and clinical oncology</subfield><subfield code="d">Springer Berlin Heidelberg, 1904</subfield><subfield code="g">150(2024), 6 vom: 26. Juni</subfield><subfield code="w">(DE-627)253769515</subfield><subfield code="w">(DE-600)1459285-X</subfield><subfield code="x">1432-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00432-024-05814-2</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_711</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.81</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield><subfield code="j">2024</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Yeghaian, Melda |
spellingShingle |
Yeghaian, Melda ddc 610 bkl 44.81 misc Blood-based markers misc Progression-free survival misc RECIST misc NSCLC misc Machine learning misc Immunotherapy Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
authorStr |
Yeghaian, Melda |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)253769515 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1335 |
topic_title |
610 VZ 44.81 bkl Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? Blood-based markers (dpeaa)DE-He213 Progression-free survival (dpeaa)DE-He213 RECIST (dpeaa)DE-He213 NSCLC (dpeaa)DE-He213 Machine learning (dpeaa)DE-He213 Immunotherapy (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.81 misc Blood-based markers misc Progression-free survival misc RECIST misc NSCLC misc Machine learning misc Immunotherapy |
topic_unstemmed |
ddc 610 bkl 44.81 misc Blood-based markers misc Progression-free survival misc RECIST misc NSCLC misc Machine learning misc Immunotherapy |
topic_browse |
ddc 610 bkl 44.81 misc Blood-based markers misc Progression-free survival misc RECIST misc NSCLC misc Machine learning misc Immunotherapy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of cancer research and clinical oncology |
hierarchy_parent_id |
253769515 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Journal of cancer research and clinical oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)253769515 (DE-600)1459285-X |
title |
Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
ctrlnum |
(DE-627)SPR056366574 (SPR)s00432-024-05814-2-e |
title_full |
Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
author_sort |
Yeghaian, Melda |
journal |
Journal of cancer research and clinical oncology |
journalStr |
Journal of cancer research and clinical oncology |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yeghaian, Melda Tareco Bucho, Teresa M. de Bruin, Melissa Schmitz, Alexander Bodalal, Zuhir Smit, Egbert F. Beets-Tan, Regina G. H. van den Broek, Daan Trebeschi, Stefano |
container_volume |
150 |
class |
610 VZ 44.81 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yeghaian, Melda |
doi_str_mv |
10.1007/s00432-024-05814-2 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
can blood-based markers predict recist progression in non-small cell lung cancer treated with immunotherapy? |
title_auth |
Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
abstract |
Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. © The Author(s) 2024 |
abstractGer |
Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. © The Author(s) 2024 |
abstract_unstemmed |
Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_165 GBV_ILN_170 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_267 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy? |
url |
https://dx.doi.org/10.1007/s00432-024-05814-2 |
remote_bool |
true |
author2 |
Tareco Bucho, Teresa M. de Bruin, Melissa Schmitz, Alexander Bodalal, Zuhir Smit, Egbert F. Beets-Tan, Regina G. H. van den Broek, Daan Trebeschi, Stefano |
author2Str |
Tareco Bucho, Teresa M. de Bruin, Melissa Schmitz, Alexander Bodalal, Zuhir Smit, Egbert F. Beets-Tan, Regina G. H. van den Broek, Daan Trebeschi, Stefano |
ppnlink |
253769515 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00432-024-05814-2 |
up_date |
2024-07-10T17:58:31.623Z |
_version_ |
1804215843944398848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR056366574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240710064658.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240627s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00432-024-05814-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056366574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00432-024-05814-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeghaian, Melda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can blood-based markers predict RECIST progression in non-small cell lung cancer treated with immunotherapy?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose In this study, we aimed to evaluate the potential of routine blood markers, serum tumour markers and their combination in predicting RECIST-defined progression in patients with stage IV non-small cell lung cancer (NSCLC) undergoing treatment with immune checkpoint inhibitors. Methods We employed time-varying statistical models and machine learning classifiers in a Monte Carlo cross-validation approach to investigate the association between RECIST-defined progression and blood markers, serum tumour markers and their combination, in a retrospective cohort of 164 patients with NSCLC. Results The performance of the routine blood markers in the prediction of progression free survival was moderate. Serum tumour markers and their combination with routine blood markers generally improved performance compared to routine blood markers alone. Elevated levels of C-reactive protein (CRP) and alkaline phosphatase (ALP) ranked as the top predictive routine blood markers, and CYFRA 21.1 was consistently among the most predictive serum tumour markers. Using these classifiers to predict overall survival yielded moderate to high performance, even when cases of death-defined progression were excluded. Performance varied across the treatment journey. Conclusion Routine blood tests, especially when combined with serum tumour markers, show moderate predictive value of RECIST-defined progression in NSCLC patients receiving immune checkpoint inhibitors. The relationship between overall survival and RECIST-defined progression may be influenced by confounding factors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood-based markers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Progression-free survival</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RECIST</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NSCLC</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immunotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tareco Bucho, Teresa M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Bruin, Melissa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmitz, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bodalal, Zuhir</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smit, Egbert F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beets-Tan, Regina G. H.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van den Broek, Daan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trebeschi, Stefano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of cancer research and clinical oncology</subfield><subfield code="d">Springer Berlin Heidelberg, 1904</subfield><subfield code="g">150(2024), 6 vom: 26. Juni</subfield><subfield code="w">(DE-627)253769515</subfield><subfield code="w">(DE-600)1459285-X</subfield><subfield code="x">1432-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:150</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:6</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00432-024-05814-2</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_711</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.81</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">150</subfield><subfield code="j">2024</subfield><subfield code="e">6</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.1676903 |