Synchronization rates and limit laws for random dynamical systems

Abstract We study general random dynamical systems of continuous maps on some compact metric space. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers, and the law of the iterat...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Gelfert, Katrin [verfasserIn]

Salcedo, Graccyela [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Random dynamical systems

Iterated function systems

Local contraction

Synchronization

Strong law of large numbers

Central limit theorem

Law of iterated logarithm

Large deviations of Lyapunov exponents

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Mathematische Zeitschrift - Springer Berlin Heidelberg, 1918, 308(2024), 1 vom: 30. Juli

Übergeordnetes Werk:

volume:308 ; year:2024 ; number:1 ; day:30 ; month:07

Links:

Volltext

DOI / URN:

10.1007/s00209-024-03571-z

Katalog-ID:

SPR05677639X

Nicht das Richtige dabei?

Schreiben Sie uns!