Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities
Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important...
Ausführliche Beschreibung
Autor*in: |
Tani, Akira [verfasserIn] Masui, Noboru [verfasserIn] Chang, Ting-Wei [verfasserIn] Okumura, Motonori [verfasserIn] Kokubu, Yutaka [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Progress in Earth and Planetary Science - Springer Berlin Heidelberg, 2014, 11(2024), 1 vom: 30. Juli |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2024 ; number:1 ; day:30 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s40645-024-00645-8 |
---|
Katalog-ID: |
SPR056794681 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR056794681 | ||
003 | DE-627 | ||
005 | 20240731064857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240731s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40645-024-00645-8 |2 doi | |
035 | |a (DE-627)SPR056794681 | ||
035 | |a (SPR)s40645-024-00645-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
100 | 1 | |a Tani, Akira |e verfasserin |4 aut | |
245 | 1 | 0 | |a Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. | ||
650 | 4 | |a Tower flux measurement |7 (dpeaa)DE-He213 | |
650 | 4 | |a Flow-through chamber |7 (dpeaa)DE-He213 | |
650 | 4 | |a Static chamber |7 (dpeaa)DE-He213 | |
650 | 4 | |a Temperature |7 (dpeaa)DE-He213 | |
650 | 4 | |a Light intensity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quercus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bamboo |7 (dpeaa)DE-He213 | |
700 | 1 | |a Masui, Noboru |e verfasserin |4 aut | |
700 | 1 | |a Chang, Ting-Wei |e verfasserin |4 aut | |
700 | 1 | |a Okumura, Motonori |e verfasserin |4 aut | |
700 | 1 | |a Kokubu, Yutaka |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Progress in Earth and Planetary Science |d Springer Berlin Heidelberg, 2014 |g 11(2024), 1 vom: 30. Juli |w (DE-627)785702520 |w (DE-600)2769526-8 |x 2197-4284 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2024 |g number:1 |g day:30 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40645-024-00645-8 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2024 |e 1 |b 30 |c 07 |
author_variant |
a t at n m nm t w c twc m o mo y k yk |
---|---|
matchkey_str |
article:21974284:2024----::aaeisortsfspeenmntreefomjrrepceijpnnesei |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s40645-024-00645-8 doi (DE-627)SPR056794681 (SPR)s40645-024-00645-8-e DE-627 ger DE-627 rakwb eng 550 VZ Tani, Akira verfasserin aut Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 Masui, Noboru verfasserin aut Chang, Ting-Wei verfasserin aut Okumura, Motonori verfasserin aut Kokubu, Yutaka verfasserin aut Enthalten in Progress in Earth and Planetary Science Springer Berlin Heidelberg, 2014 11(2024), 1 vom: 30. Juli (DE-627)785702520 (DE-600)2769526-8 2197-4284 nnns volume:11 year:2024 number:1 day:30 month:07 https://dx.doi.org/10.1186/s40645-024-00645-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 30 07 |
spelling |
10.1186/s40645-024-00645-8 doi (DE-627)SPR056794681 (SPR)s40645-024-00645-8-e DE-627 ger DE-627 rakwb eng 550 VZ Tani, Akira verfasserin aut Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 Masui, Noboru verfasserin aut Chang, Ting-Wei verfasserin aut Okumura, Motonori verfasserin aut Kokubu, Yutaka verfasserin aut Enthalten in Progress in Earth and Planetary Science Springer Berlin Heidelberg, 2014 11(2024), 1 vom: 30. Juli (DE-627)785702520 (DE-600)2769526-8 2197-4284 nnns volume:11 year:2024 number:1 day:30 month:07 https://dx.doi.org/10.1186/s40645-024-00645-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 30 07 |
allfields_unstemmed |
10.1186/s40645-024-00645-8 doi (DE-627)SPR056794681 (SPR)s40645-024-00645-8-e DE-627 ger DE-627 rakwb eng 550 VZ Tani, Akira verfasserin aut Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 Masui, Noboru verfasserin aut Chang, Ting-Wei verfasserin aut Okumura, Motonori verfasserin aut Kokubu, Yutaka verfasserin aut Enthalten in Progress in Earth and Planetary Science Springer Berlin Heidelberg, 2014 11(2024), 1 vom: 30. Juli (DE-627)785702520 (DE-600)2769526-8 2197-4284 nnns volume:11 year:2024 number:1 day:30 month:07 https://dx.doi.org/10.1186/s40645-024-00645-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 30 07 |
allfieldsGer |
10.1186/s40645-024-00645-8 doi (DE-627)SPR056794681 (SPR)s40645-024-00645-8-e DE-627 ger DE-627 rakwb eng 550 VZ Tani, Akira verfasserin aut Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 Masui, Noboru verfasserin aut Chang, Ting-Wei verfasserin aut Okumura, Motonori verfasserin aut Kokubu, Yutaka verfasserin aut Enthalten in Progress in Earth and Planetary Science Springer Berlin Heidelberg, 2014 11(2024), 1 vom: 30. Juli (DE-627)785702520 (DE-600)2769526-8 2197-4284 nnns volume:11 year:2024 number:1 day:30 month:07 https://dx.doi.org/10.1186/s40645-024-00645-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 30 07 |
allfieldsSound |
10.1186/s40645-024-00645-8 doi (DE-627)SPR056794681 (SPR)s40645-024-00645-8-e DE-627 ger DE-627 rakwb eng 550 VZ Tani, Akira verfasserin aut Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 Masui, Noboru verfasserin aut Chang, Ting-Wei verfasserin aut Okumura, Motonori verfasserin aut Kokubu, Yutaka verfasserin aut Enthalten in Progress in Earth and Planetary Science Springer Berlin Heidelberg, 2014 11(2024), 1 vom: 30. Juli (DE-627)785702520 (DE-600)2769526-8 2197-4284 nnns volume:11 year:2024 number:1 day:30 month:07 https://dx.doi.org/10.1186/s40645-024-00645-8 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2024 1 30 07 |
language |
English |
source |
Enthalten in Progress in Earth and Planetary Science 11(2024), 1 vom: 30. Juli volume:11 year:2024 number:1 day:30 month:07 |
sourceStr |
Enthalten in Progress in Earth and Planetary Science 11(2024), 1 vom: 30. Juli volume:11 year:2024 number:1 day:30 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tower flux measurement Flow-through chamber Static chamber Temperature Light intensity Quercus Bamboo |
dewey-raw |
550 |
isfreeaccess_bool |
true |
container_title |
Progress in Earth and Planetary Science |
authorswithroles_txt_mv |
Tani, Akira @@aut@@ Masui, Noboru @@aut@@ Chang, Ting-Wei @@aut@@ Okumura, Motonori @@aut@@ Kokubu, Yutaka @@aut@@ |
publishDateDaySort_date |
2024-07-30T00:00:00Z |
hierarchy_top_id |
785702520 |
dewey-sort |
3550 |
id |
SPR056794681 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056794681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240731064857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240731s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40645-024-00645-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056794681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40645-024-00645-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tani, Akira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tower flux measurement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow-through chamber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static chamber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light intensity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quercus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bamboo</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masui, Noboru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Ting-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okumura, Motonori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kokubu, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Progress in Earth and Planetary Science</subfield><subfield code="d">Springer Berlin Heidelberg, 2014</subfield><subfield code="g">11(2024), 1 vom: 30. Juli</subfield><subfield code="w">(DE-627)785702520</subfield><subfield code="w">(DE-600)2769526-8</subfield><subfield code="x">2197-4284</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40645-024-00645-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Tani, Akira |
spellingShingle |
Tani, Akira ddc 550 misc Tower flux measurement misc Flow-through chamber misc Static chamber misc Temperature misc Light intensity misc Quercus misc Bamboo Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
authorStr |
Tani, Akira |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)785702520 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2197-4284 |
topic_title |
550 VZ Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities Tower flux measurement (dpeaa)DE-He213 Flow-through chamber (dpeaa)DE-He213 Static chamber (dpeaa)DE-He213 Temperature (dpeaa)DE-He213 Light intensity (dpeaa)DE-He213 Quercus (dpeaa)DE-He213 Bamboo (dpeaa)DE-He213 |
topic |
ddc 550 misc Tower flux measurement misc Flow-through chamber misc Static chamber misc Temperature misc Light intensity misc Quercus misc Bamboo |
topic_unstemmed |
ddc 550 misc Tower flux measurement misc Flow-through chamber misc Static chamber misc Temperature misc Light intensity misc Quercus misc Bamboo |
topic_browse |
ddc 550 misc Tower flux measurement misc Flow-through chamber misc Static chamber misc Temperature misc Light intensity misc Quercus misc Bamboo |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Progress in Earth and Planetary Science |
hierarchy_parent_id |
785702520 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Progress in Earth and Planetary Science |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)785702520 (DE-600)2769526-8 |
title |
Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
ctrlnum |
(DE-627)SPR056794681 (SPR)s40645-024-00645-8-e |
title_full |
Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
author_sort |
Tani, Akira |
journal |
Progress in Earth and Planetary Science |
journalStr |
Progress in Earth and Planetary Science |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Tani, Akira Masui, Noboru Chang, Ting-Wei Okumura, Motonori Kokubu, Yutaka |
container_volume |
11 |
class |
550 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Tani, Akira |
doi_str_mv |
10.1186/s40645-024-00645-8 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
basal emission rates of isoprene and monoterpenes from major tree species in japan: interspecies and intraspecies variabilities |
title_auth |
Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
abstract |
Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. © The Author(s) 2024 |
abstractGer |
Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OPC-AST SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities |
url |
https://dx.doi.org/10.1186/s40645-024-00645-8 |
remote_bool |
true |
author2 |
Masui, Noboru Chang, Ting-Wei Okumura, Motonori Kokubu, Yutaka |
author2Str |
Masui, Noboru Chang, Ting-Wei Okumura, Motonori Kokubu, Yutaka |
ppnlink |
785702520 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40645-024-00645-8 |
up_date |
2024-07-31T04:51:21.873Z |
_version_ |
1806068856258560000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056794681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240731064857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240731s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40645-024-00645-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056794681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40645-024-00645-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tani, Akira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Uncontrolled terpenoid emissions from forest trees in Japan may have contributed to high $ O_{3} $ concentrations observed in urban and suburban areas. To estimate ozone formation via a series of reactions between $ NO_{x} $ and terpenoids using atmospheric chemistry models, it is important to produce terpenoid emission inventories by collecting all reported emission data for the major tree species in Japan and examining their reliability. In this review, we first describe three different plant terpenoid emission types, i.e., isoprene-emitting type, monoterpene-emitting type with storage tissues and organs, and monoterpene-emitting type without storage tissues and organs. Second, we describe various methods for measuring plant terpenoid emissions, including a recently developed simplified method, and explain their reliability. We emphasized that applicable measurement methods depend on the terpenoid emission types. Data obtained using static chamber methods should not be considered because they have the highest uncertainty resulting from normal chamber materials that are not specific to terpenoid measurements and lack humidity control. Finally, we show the absolute values of the collected emission rates and describe their variability. The deciduous oak species, Quercus serrata and Quercus mongolica var. crispula, and bamboo species, Phyllostachys pubescens and Phyllostachys bambusoides, are strong isoprene emitters. Among the monoterpene emitters, four evergreen broadleaf trees, including three Quercus species, had the highest basal emission rate (BER). The monoterpene storage type conifers Larix kaempferi and Pinus densiflora have relatively lower BERs. Emission data are not available for Castanopsis cuspidata, and seasonal changes in emission rates have not been reported for several major tree species in the top 20 rankings. Within species, the reported emission rates of some tree species differed by threefold. These differences may be attributed to the reliability of the measurement and analytical systems, tree age, leaf morphology, environmental conditions, and genetic diversity. We emphasize the need for reliable measurements to achieve a more precise terpenoid emission inventory for major tree species in Japan.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tower flux measurement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow-through chamber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static chamber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light intensity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quercus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bamboo</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masui, Noboru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Ting-Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okumura, Motonori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kokubu, Yutaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Progress in Earth and Planetary Science</subfield><subfield code="d">Springer Berlin Heidelberg, 2014</subfield><subfield code="g">11(2024), 1 vom: 30. Juli</subfield><subfield code="w">(DE-627)785702520</subfield><subfield code="w">(DE-600)2769526-8</subfield><subfield code="x">2197-4284</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40645-024-00645-8</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4007425 |