A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants
Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have as...
Ausführliche Beschreibung
Autor*in: |
Kristiansen, N. I. [verfasserIn] Witham, C. S. [verfasserIn] Beckett, F. M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Crown © as represented by Met Office 2024 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of applied volcanology - Springer Berlin Heidelberg, 2012, 13(2024), 1 vom: 05. Aug. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2024 ; number:1 ; day:05 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s13617-024-00144-x |
---|
Katalog-ID: |
SPR056847629 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR056847629 | ||
003 | DE-627 | ||
005 | 20240805064611.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240805s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13617-024-00144-x |2 doi | |
035 | |a (DE-627)SPR056847629 | ||
035 | |a (SPR)s13617-024-00144-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
100 | 1 | |a Kristiansen, N. I. |e verfasserin |4 aut | |
245 | 1 | 0 | |a A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Crown © as represented by Met Office 2024 2024 | ||
520 | |a Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. | ||
650 | 4 | |a Volcanic eruptions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Volcanic gases |7 (dpeaa)DE-He213 | |
650 | 4 | |a Volcanic hazard |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sulphur dioxide |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hazard assessment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Exposure thresholds |7 (dpeaa)DE-He213 | |
650 | 4 | |a Atmospheric models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kasatochi |7 (dpeaa)DE-He213 | |
650 | 4 | |a Raikoke |7 (dpeaa)DE-He213 | |
700 | 1 | |a Witham, C. S. |e verfasserin |4 aut | |
700 | 1 | |a Beckett, F. M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of applied volcanology |d Springer Berlin Heidelberg, 2012 |g 13(2024), 1 vom: 05. Aug. |w (DE-627)689717725 |w (DE-600)2657636-3 |x 2191-5040 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2024 |g number:1 |g day:05 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13617-024-00144-x |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2024 |e 1 |b 05 |c 08 |
author_variant |
n i k ni nik c s w cs csw f m b fm fmb |
---|---|
matchkey_str |
article:21915040:2024----::mdligprahoqatfigocncupudoieocnrtostlgtliueadhp |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s13617-024-00144-x doi (DE-627)SPR056847629 (SPR)s13617-024-00144-x-e DE-627 ger DE-627 rakwb eng 550 VZ Kristiansen, N. I. verfasserin aut A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crown © as represented by Met Office 2024 2024 Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 Witham, C. S. verfasserin aut Beckett, F. M. verfasserin aut Enthalten in Journal of applied volcanology Springer Berlin Heidelberg, 2012 13(2024), 1 vom: 05. Aug. (DE-627)689717725 (DE-600)2657636-3 2191-5040 nnns volume:13 year:2024 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13617-024-00144-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1 05 08 |
spelling |
10.1186/s13617-024-00144-x doi (DE-627)SPR056847629 (SPR)s13617-024-00144-x-e DE-627 ger DE-627 rakwb eng 550 VZ Kristiansen, N. I. verfasserin aut A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crown © as represented by Met Office 2024 2024 Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 Witham, C. S. verfasserin aut Beckett, F. M. verfasserin aut Enthalten in Journal of applied volcanology Springer Berlin Heidelberg, 2012 13(2024), 1 vom: 05. Aug. (DE-627)689717725 (DE-600)2657636-3 2191-5040 nnns volume:13 year:2024 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13617-024-00144-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1 05 08 |
allfields_unstemmed |
10.1186/s13617-024-00144-x doi (DE-627)SPR056847629 (SPR)s13617-024-00144-x-e DE-627 ger DE-627 rakwb eng 550 VZ Kristiansen, N. I. verfasserin aut A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crown © as represented by Met Office 2024 2024 Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 Witham, C. S. verfasserin aut Beckett, F. M. verfasserin aut Enthalten in Journal of applied volcanology Springer Berlin Heidelberg, 2012 13(2024), 1 vom: 05. Aug. (DE-627)689717725 (DE-600)2657636-3 2191-5040 nnns volume:13 year:2024 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13617-024-00144-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1 05 08 |
allfieldsGer |
10.1186/s13617-024-00144-x doi (DE-627)SPR056847629 (SPR)s13617-024-00144-x-e DE-627 ger DE-627 rakwb eng 550 VZ Kristiansen, N. I. verfasserin aut A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crown © as represented by Met Office 2024 2024 Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 Witham, C. S. verfasserin aut Beckett, F. M. verfasserin aut Enthalten in Journal of applied volcanology Springer Berlin Heidelberg, 2012 13(2024), 1 vom: 05. Aug. (DE-627)689717725 (DE-600)2657636-3 2191-5040 nnns volume:13 year:2024 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13617-024-00144-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1 05 08 |
allfieldsSound |
10.1186/s13617-024-00144-x doi (DE-627)SPR056847629 (SPR)s13617-024-00144-x-e DE-627 ger DE-627 rakwb eng 550 VZ Kristiansen, N. I. verfasserin aut A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Crown © as represented by Met Office 2024 2024 Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 Witham, C. S. verfasserin aut Beckett, F. M. verfasserin aut Enthalten in Journal of applied volcanology Springer Berlin Heidelberg, 2012 13(2024), 1 vom: 05. Aug. (DE-627)689717725 (DE-600)2657636-3 2191-5040 nnns volume:13 year:2024 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13617-024-00144-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 13 2024 1 05 08 |
language |
English |
source |
Enthalten in Journal of applied volcanology 13(2024), 1 vom: 05. Aug. volume:13 year:2024 number:1 day:05 month:08 |
sourceStr |
Enthalten in Journal of applied volcanology 13(2024), 1 vom: 05. Aug. volume:13 year:2024 number:1 day:05 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Volcanic eruptions Volcanic gases Volcanic hazard Sulphur dioxide Hazard assessment Exposure thresholds Atmospheric models Kasatochi Raikoke |
dewey-raw |
550 |
isfreeaccess_bool |
true |
container_title |
Journal of applied volcanology |
authorswithroles_txt_mv |
Kristiansen, N. I. @@aut@@ Witham, C. S. @@aut@@ Beckett, F. M. @@aut@@ |
publishDateDaySort_date |
2024-08-05T00:00:00Z |
hierarchy_top_id |
689717725 |
dewey-sort |
3550 |
id |
SPR056847629 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056847629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240805064611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240805s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13617-024-00144-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056847629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13617-024-00144-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kristiansen, N. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Crown © as represented by Met Office 2024 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic eruptions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic gases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic hazard</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulphur dioxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hazard assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exposure thresholds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kasatochi</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raikoke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Witham, C. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beckett, F. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied volcanology</subfield><subfield code="d">Springer Berlin Heidelberg, 2012</subfield><subfield code="g">13(2024), 1 vom: 05. Aug.</subfield><subfield code="w">(DE-627)689717725</subfield><subfield code="w">(DE-600)2657636-3</subfield><subfield code="x">2191-5040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13617-024-00144-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Kristiansen, N. I. |
spellingShingle |
Kristiansen, N. I. ddc 550 misc Volcanic eruptions misc Volcanic gases misc Volcanic hazard misc Sulphur dioxide misc Hazard assessment misc Exposure thresholds misc Atmospheric models misc Kasatochi misc Raikoke A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
authorStr |
Kristiansen, N. I. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)689717725 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2191-5040 |
topic_title |
550 VZ A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants Volcanic eruptions (dpeaa)DE-He213 Volcanic gases (dpeaa)DE-He213 Volcanic hazard (dpeaa)DE-He213 Sulphur dioxide (dpeaa)DE-He213 Hazard assessment (dpeaa)DE-He213 Exposure thresholds (dpeaa)DE-He213 Atmospheric models (dpeaa)DE-He213 Kasatochi (dpeaa)DE-He213 Raikoke (dpeaa)DE-He213 |
topic |
ddc 550 misc Volcanic eruptions misc Volcanic gases misc Volcanic hazard misc Sulphur dioxide misc Hazard assessment misc Exposure thresholds misc Atmospheric models misc Kasatochi misc Raikoke |
topic_unstemmed |
ddc 550 misc Volcanic eruptions misc Volcanic gases misc Volcanic hazard misc Sulphur dioxide misc Hazard assessment misc Exposure thresholds misc Atmospheric models misc Kasatochi misc Raikoke |
topic_browse |
ddc 550 misc Volcanic eruptions misc Volcanic gases misc Volcanic hazard misc Sulphur dioxide misc Hazard assessment misc Exposure thresholds misc Atmospheric models misc Kasatochi misc Raikoke |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of applied volcanology |
hierarchy_parent_id |
689717725 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of applied volcanology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)689717725 (DE-600)2657636-3 |
title |
A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
ctrlnum |
(DE-627)SPR056847629 (SPR)s13617-024-00144-x-e |
title_full |
A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
author_sort |
Kristiansen, N. I. |
journal |
Journal of applied volcanology |
journalStr |
Journal of applied volcanology |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Kristiansen, N. I. Witham, C. S. Beckett, F. M. |
container_volume |
13 |
class |
550 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Kristiansen, N. I. |
doi_str_mv |
10.1186/s13617-024-00144-x |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
a modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
title_auth |
A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
abstract |
Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. © Crown © as represented by Met Office 2024 2024 |
abstractGer |
Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. © Crown © as represented by Met Office 2024 2024 |
abstract_unstemmed |
Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation. © Crown © as represented by Met Office 2024 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants |
url |
https://dx.doi.org/10.1186/s13617-024-00144-x |
remote_bool |
true |
author2 |
Witham, C. S. Beckett, F. M. |
author2Str |
Witham, C. S. Beckett, F. M. |
ppnlink |
689717725 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13617-024-00144-x |
up_date |
2024-08-05T04:46:53.478Z |
_version_ |
1806521559659053056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056847629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240805064611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240805s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13617-024-00144-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056847629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13617-024-00144-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kristiansen, N. I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modelling approach for quantifying volcanic sulphur dioxide concentrations at flight altitudes and the potential hazard to aircraft occupants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Crown © as represented by Met Office 2024 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Volcanic eruptions can emit large quantities of sulphur dioxide ($ SO_{2} $) into the atmosphere, which can be harmful to people and the environment. Aircraft encounters with a volcanic $ SO_{2} $ cloud could represent a health hazard to crew and passengers onboard. In this study we have assessed concentration levels of volcanic $ SO_{2} $ in the atmosphere following eight historic eruptions and use four-dimensional dispersion model simulation data to calculate when and where the World Health Organisation (WHO) health protection guideline for $ SO_{2} $ of 500 $ μgm^{-3} $ over 10 minutes is exceeded. The time and area of exceedance varies and depends on the eruption characteristics: the amount, duration and height of the $ SO_{2} $ release. The WHO-based guideline value is exceeded for all historic eruptions considered. In several cases, the area delineated by the WHO-based guideline, here called the $ SO_{2} $ hazard area, can be considerably larger than the volcanic ash hazard area for the same eruption. $ SO_{2} $ hazard areas also often extend over a longer period of time compared to the equivalent ash advisories. For example, following the 2019 eruption of Raikoke, the $ SO_{2} $ hazard area reached up to 1.7 million $ km^{2} $ and the WHO-based guideline value was exceeded for about two weeks, while volcanic ash was considered hazardous to aviation for about five days. These results will help the aviation industry to better understand the potential risks to their passengers and crew from volcanic $ SO_{2} $, and aid in defining concentration thresholds for any potential volcanic $ SO_{2} $ forecasts for aviation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic eruptions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic gases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volcanic hazard</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sulphur dioxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hazard assessment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exposure thresholds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atmospheric models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kasatochi</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Raikoke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Witham, C. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beckett, F. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of applied volcanology</subfield><subfield code="d">Springer Berlin Heidelberg, 2012</subfield><subfield code="g">13(2024), 1 vom: 05. Aug.</subfield><subfield code="w">(DE-627)689717725</subfield><subfield code="w">(DE-600)2657636-3</subfield><subfield code="x">2191-5040</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13617-024-00144-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4019346 |