Correlation function of thin-shell operators
Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equa...
Ausführliche Beschreibung
Autor*in: |
Chen, Bin [verfasserIn] Liu, Yuefeng [verfasserIn] Yu, Boyang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of high energy physics - Springer Berlin Heidelberg, 1997, 2024(2024), 8 vom: 12. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2024 ; year:2024 ; number:8 ; day:12 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/JHEP08(2024)082 |
---|
Katalog-ID: |
SPR056944012 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR056944012 | ||
003 | DE-627 | ||
005 | 20240813064809.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240813s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP08(2024)082 |2 doi | |
035 | |a (DE-627)SPR056944012 | ||
035 | |a (SPR)JHEP08(2024)082-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.46 |2 bkl | ||
100 | 1 | |a Chen, Bin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Correlation function of thin-shell operators |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. | ||
650 | 4 | |a AdS-CFT Correspondence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Black Holes in String Theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Conformal Field Models in String Theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Scale and Conformal Symmetries |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Yuefeng |e verfasserin |0 (orcid)0000-0002-6890-233X |4 aut | |
700 | 1 | |a Yu, Boyang |e verfasserin |0 (orcid)0000-0003-4993-2258 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Springer Berlin Heidelberg, 1997 |g 2024(2024), 8 vom: 12. Aug. |w (DE-627)320910571 |w (DE-600)2027350-2 |x 1029-8479 |7 nnns |
773 | 1 | 8 | |g volume:2024 |g year:2024 |g number:8 |g day:12 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/JHEP08(2024)082 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.46 |q VZ |
951 | |a AR | ||
952 | |d 2024 |j 2024 |e 8 |b 12 |c 08 |
author_variant |
b c bc y l yl b y by |
---|---|
matchkey_str |
article:10298479:2024----::orltofntootis |
hierarchy_sort_str |
2024 |
bklnumber |
33.46 |
publishDate |
2024 |
allfields |
10.1007/JHEP08(2024)082 doi (DE-627)SPR056944012 (SPR)JHEP08(2024)082-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chen, Bin verfasserin aut Correlation function of thin-shell operators 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 Liu, Yuefeng verfasserin (orcid)0000-0002-6890-233X aut Yu, Boyang verfasserin (orcid)0000-0003-4993-2258 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 8 vom: 12. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:8 day:12 month:08 https://dx.doi.org/10.1007/JHEP08(2024)082 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 8 12 08 |
spelling |
10.1007/JHEP08(2024)082 doi (DE-627)SPR056944012 (SPR)JHEP08(2024)082-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chen, Bin verfasserin aut Correlation function of thin-shell operators 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 Liu, Yuefeng verfasserin (orcid)0000-0002-6890-233X aut Yu, Boyang verfasserin (orcid)0000-0003-4993-2258 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 8 vom: 12. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:8 day:12 month:08 https://dx.doi.org/10.1007/JHEP08(2024)082 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 8 12 08 |
allfields_unstemmed |
10.1007/JHEP08(2024)082 doi (DE-627)SPR056944012 (SPR)JHEP08(2024)082-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chen, Bin verfasserin aut Correlation function of thin-shell operators 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 Liu, Yuefeng verfasserin (orcid)0000-0002-6890-233X aut Yu, Boyang verfasserin (orcid)0000-0003-4993-2258 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 8 vom: 12. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:8 day:12 month:08 https://dx.doi.org/10.1007/JHEP08(2024)082 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 8 12 08 |
allfieldsGer |
10.1007/JHEP08(2024)082 doi (DE-627)SPR056944012 (SPR)JHEP08(2024)082-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chen, Bin verfasserin aut Correlation function of thin-shell operators 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 Liu, Yuefeng verfasserin (orcid)0000-0002-6890-233X aut Yu, Boyang verfasserin (orcid)0000-0003-4993-2258 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 8 vom: 12. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:8 day:12 month:08 https://dx.doi.org/10.1007/JHEP08(2024)082 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 8 12 08 |
allfieldsSound |
10.1007/JHEP08(2024)082 doi (DE-627)SPR056944012 (SPR)JHEP08(2024)082-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chen, Bin verfasserin aut Correlation function of thin-shell operators 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 Liu, Yuefeng verfasserin (orcid)0000-0002-6890-233X aut Yu, Boyang verfasserin (orcid)0000-0003-4993-2258 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 8 vom: 12. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:8 day:12 month:08 https://dx.doi.org/10.1007/JHEP08(2024)082 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 8 12 08 |
language |
English |
source |
Enthalten in Journal of high energy physics 2024(2024), 8 vom: 12. Aug. volume:2024 year:2024 number:8 day:12 month:08 |
sourceStr |
Enthalten in Journal of high energy physics 2024(2024), 8 vom: 12. Aug. volume:2024 year:2024 number:8 day:12 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AdS-CFT Correspondence Black Holes in String Theory Conformal Field Models in String Theory Scale and Conformal Symmetries |
dewey-raw |
530 |
isfreeaccess_bool |
true |
container_title |
Journal of high energy physics |
authorswithroles_txt_mv |
Chen, Bin @@aut@@ Liu, Yuefeng @@aut@@ Yu, Boyang @@aut@@ |
publishDateDaySort_date |
2024-08-12T00:00:00Z |
hierarchy_top_id |
320910571 |
dewey-sort |
3530 |
id |
SPR056944012 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056944012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240813064809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240813s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2024)082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056944012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP08(2024)082-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Correlation function of thin-shell operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Holes in String Theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Field Models in String Theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale and Conformal Symmetries</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuefeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6890-233X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Boyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4993-2258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 8 vom: 12. Aug.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:8</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP08(2024)082</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">8</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Chen, Bin |
spellingShingle |
Chen, Bin ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes in String Theory misc Conformal Field Models in String Theory misc Scale and Conformal Symmetries Correlation function of thin-shell operators |
authorStr |
Chen, Bin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-8479 |
topic_title |
530 VZ 33.46 bkl Correlation function of thin-shell operators AdS-CFT Correspondence (dpeaa)DE-He213 Black Holes in String Theory (dpeaa)DE-He213 Conformal Field Models in String Theory (dpeaa)DE-He213 Scale and Conformal Symmetries (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes in String Theory misc Conformal Field Models in String Theory misc Scale and Conformal Symmetries |
topic_unstemmed |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes in String Theory misc Conformal Field Models in String Theory misc Scale and Conformal Symmetries |
topic_browse |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Black Holes in String Theory misc Conformal Field Models in String Theory misc Scale and Conformal Symmetries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of high energy physics |
hierarchy_parent_id |
320910571 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of high energy physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Correlation function of thin-shell operators |
ctrlnum |
(DE-627)SPR056944012 (SPR)JHEP08(2024)082-e |
title_full |
Correlation function of thin-shell operators |
author_sort |
Chen, Bin |
journal |
Journal of high energy physics |
journalStr |
Journal of high energy physics |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Chen, Bin Liu, Yuefeng Yu, Boyang |
container_volume |
2024 |
class |
530 VZ 33.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Bin |
doi_str_mv |
10.1007/JHEP08(2024)082 |
normlink |
(ORCID)0000-0002-6890-233X (ORCID)0000-0003-4993-2258 |
normlink_prefix_str_mv |
(orcid)0000-0002-6890-233X (orcid)0000-0003-4993-2258 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
correlation function of thin-shell operators |
title_auth |
Correlation function of thin-shell operators |
abstract |
Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. © The Author(s) 2024 |
abstractGer |
Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. © The Author(s) 2024 |
abstract_unstemmed |
Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Correlation function of thin-shell operators |
url |
https://dx.doi.org/10.1007/JHEP08(2024)082 |
remote_bool |
true |
author2 |
Liu, Yuefeng Yu, Boyang |
author2Str |
Liu, Yuefeng Yu, Boyang |
ppnlink |
320910571 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP08(2024)082 |
up_date |
2024-08-13T04:50:30.518Z |
_version_ |
1807246562971090944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR056944012</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240813064809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240813s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2024)082</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR056944012</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP08(2024)082-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Correlation function of thin-shell operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we explore the correlation functions of thin-shell operators, represented semiclassically by a homogeneous, thin interface of dust particles. Employing the monodromy method, we successfully compute the contribution from the Virasoro vacuum block and present the monodromy equation in a closed form without assuming the probe limit. Although an analytical solution to the monodromy equation remains difficult, we demonstrate that it is perturbatively solvable within specific limits, including the probe limit, the heavy-shell limit, and the early-time limit. Moreover, we compare our results with gravitational calculations and find precise agreement. We strengthen our findings by proving that the thermal correlation functions in gravity, after an inverse Laplace transformation, satisfy the field theory’s monodromy equation. Additionally, we identify an infinite series of unphysical solutions to the monodromy equation and discuss their potential geometrical duals.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Holes in String Theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conformal Field Models in String Theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale and Conformal Symmetries</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuefeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6890-233X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Boyang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4993-2258</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 8 vom: 12. Aug.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:8</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP08(2024)082</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">8</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4017067 |