Modeling topic evolution in public opinion events: an unsupervised spatio-temporal graph attention approach

Abstract With the widespread use of online social media, Public Opinion Events (POEs) quickly propagate on the Internet, generating a vast amount of textual data centered around various discussed topics. The development of POEs is closely linked to the evolution of these topics. However, in developi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wang, Xi [verfasserIn]

Kong, Mingming [verfasserIn]

Chen, Jiexin [verfasserIn]

Wang, Xianjun [verfasserIn]

Pei, Zheng [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Unsupervised

Spatio-temporal graph attention

Topic trend prediction

Public opinion event

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Springer US, 1991, 54(2024), 20 vom: 22. Juli, Seite 9706-9722

Übergeordnetes Werk:

volume:54 ; year:2024 ; number:20 ; day:22 ; month:07 ; pages:9706-9722

Links:

Volltext

DOI / URN:

10.1007/s10489-024-05684-8

Katalog-ID:

SPR056976070

Nicht das Richtige dabei?

Schreiben Sie uns!