Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production
Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. Ho...
Ausführliche Beschreibung
Autor*in: |
Lei, Jia [verfasserIn] Wang, Ziyi [verfasserIn] Zhang, Yunze [verfasserIn] Ju, Min [verfasserIn] Fei, Hao [verfasserIn] Wang, Siyuan [verfasserIn] Fu, Chengxi [verfasserIn] Yuan, Xinchang [verfasserIn] Fu, Qiang [verfasserIn] Farid, Muhammad Usman [verfasserIn] Kong, Hui [verfasserIn] An, Alicia Kyoungjin [verfasserIn] Deng, Runxu [verfasserIn] Liu, Feng [verfasserIn] Wang, Jian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Carbon neutrality - Springer Nature Singapore, 2022, 3(2024), 1 vom: 26. Aug. |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2024 ; number:1 ; day:26 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s43979-024-00101-y |
---|
Katalog-ID: |
SPR057101531 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057101531 | ||
003 | DE-627 | ||
005 | 20240827064742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240827s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s43979-024-00101-y |2 doi | |
035 | |a (DE-627)SPR057101531 | ||
035 | |a (SPR)s43979-024-00101-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 320 |a 600 |q VZ |
100 | 1 | |a Lei, Jia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. | ||
650 | 4 | |a Water electrolysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Anion exchange membrane |7 (dpeaa)DE-He213 | |
650 | 4 | |a Degradation mechanism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydrogen |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Ziyi |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yunze |e verfasserin |4 aut | |
700 | 1 | |a Ju, Min |e verfasserin |4 aut | |
700 | 1 | |a Fei, Hao |e verfasserin |4 aut | |
700 | 1 | |a Wang, Siyuan |e verfasserin |4 aut | |
700 | 1 | |a Fu, Chengxi |e verfasserin |4 aut | |
700 | 1 | |a Yuan, Xinchang |e verfasserin |4 aut | |
700 | 1 | |a Fu, Qiang |e verfasserin |4 aut | |
700 | 1 | |a Farid, Muhammad Usman |e verfasserin |4 aut | |
700 | 1 | |a Kong, Hui |e verfasserin |4 aut | |
700 | 1 | |a An, Alicia Kyoungjin |e verfasserin |4 aut | |
700 | 1 | |a Deng, Runxu |e verfasserin |4 aut | |
700 | 1 | |a Liu, Feng |e verfasserin |4 aut | |
700 | 1 | |a Wang, Jian |e verfasserin |0 (orcid)0000-0002-6800-0467 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Carbon neutrality |d Springer Nature Singapore, 2022 |g 3(2024), 1 vom: 26. Aug. |w (DE-627)1802100741 |w (DE-600)3119327-4 |x 2731-3948 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2024 |g number:1 |g day:26 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s43979-024-00101-y |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2024 |e 1 |b 26 |c 08 |
author_variant |
j l jl z w zw y z yz m j mj h f hf s w sw c f cf x y xy q f qf m u f mu muf h k hk a k a ak aka r d rd f l fl j w jw |
---|---|
matchkey_str |
article:27313948:2024----::nesadnadeovnteeeoeeudgaainfnoecagmmrnwtrlcrls |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s43979-024-00101-y doi (DE-627)SPR057101531 (SPR)s43979-024-00101-y-e DE-627 ger DE-627 rakwb eng 333.7 320 600 VZ Lei, Jia verfasserin aut Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Wang, Ziyi verfasserin aut Zhang, Yunze verfasserin aut Ju, Min verfasserin aut Fei, Hao verfasserin aut Wang, Siyuan verfasserin aut Fu, Chengxi verfasserin aut Yuan, Xinchang verfasserin aut Fu, Qiang verfasserin aut Farid, Muhammad Usman verfasserin aut Kong, Hui verfasserin aut An, Alicia Kyoungjin verfasserin aut Deng, Runxu verfasserin aut Liu, Feng verfasserin aut Wang, Jian verfasserin (orcid)0000-0002-6800-0467 aut Enthalten in Carbon neutrality Springer Nature Singapore, 2022 3(2024), 1 vom: 26. Aug. (DE-627)1802100741 (DE-600)3119327-4 2731-3948 nnns volume:3 year:2024 number:1 day:26 month:08 https://dx.doi.org/10.1007/s43979-024-00101-y X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2024 1 26 08 |
spelling |
10.1007/s43979-024-00101-y doi (DE-627)SPR057101531 (SPR)s43979-024-00101-y-e DE-627 ger DE-627 rakwb eng 333.7 320 600 VZ Lei, Jia verfasserin aut Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Wang, Ziyi verfasserin aut Zhang, Yunze verfasserin aut Ju, Min verfasserin aut Fei, Hao verfasserin aut Wang, Siyuan verfasserin aut Fu, Chengxi verfasserin aut Yuan, Xinchang verfasserin aut Fu, Qiang verfasserin aut Farid, Muhammad Usman verfasserin aut Kong, Hui verfasserin aut An, Alicia Kyoungjin verfasserin aut Deng, Runxu verfasserin aut Liu, Feng verfasserin aut Wang, Jian verfasserin (orcid)0000-0002-6800-0467 aut Enthalten in Carbon neutrality Springer Nature Singapore, 2022 3(2024), 1 vom: 26. Aug. (DE-627)1802100741 (DE-600)3119327-4 2731-3948 nnns volume:3 year:2024 number:1 day:26 month:08 https://dx.doi.org/10.1007/s43979-024-00101-y X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2024 1 26 08 |
allfields_unstemmed |
10.1007/s43979-024-00101-y doi (DE-627)SPR057101531 (SPR)s43979-024-00101-y-e DE-627 ger DE-627 rakwb eng 333.7 320 600 VZ Lei, Jia verfasserin aut Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Wang, Ziyi verfasserin aut Zhang, Yunze verfasserin aut Ju, Min verfasserin aut Fei, Hao verfasserin aut Wang, Siyuan verfasserin aut Fu, Chengxi verfasserin aut Yuan, Xinchang verfasserin aut Fu, Qiang verfasserin aut Farid, Muhammad Usman verfasserin aut Kong, Hui verfasserin aut An, Alicia Kyoungjin verfasserin aut Deng, Runxu verfasserin aut Liu, Feng verfasserin aut Wang, Jian verfasserin (orcid)0000-0002-6800-0467 aut Enthalten in Carbon neutrality Springer Nature Singapore, 2022 3(2024), 1 vom: 26. Aug. (DE-627)1802100741 (DE-600)3119327-4 2731-3948 nnns volume:3 year:2024 number:1 day:26 month:08 https://dx.doi.org/10.1007/s43979-024-00101-y X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2024 1 26 08 |
allfieldsGer |
10.1007/s43979-024-00101-y doi (DE-627)SPR057101531 (SPR)s43979-024-00101-y-e DE-627 ger DE-627 rakwb eng 333.7 320 600 VZ Lei, Jia verfasserin aut Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Wang, Ziyi verfasserin aut Zhang, Yunze verfasserin aut Ju, Min verfasserin aut Fei, Hao verfasserin aut Wang, Siyuan verfasserin aut Fu, Chengxi verfasserin aut Yuan, Xinchang verfasserin aut Fu, Qiang verfasserin aut Farid, Muhammad Usman verfasserin aut Kong, Hui verfasserin aut An, Alicia Kyoungjin verfasserin aut Deng, Runxu verfasserin aut Liu, Feng verfasserin aut Wang, Jian verfasserin (orcid)0000-0002-6800-0467 aut Enthalten in Carbon neutrality Springer Nature Singapore, 2022 3(2024), 1 vom: 26. Aug. (DE-627)1802100741 (DE-600)3119327-4 2731-3948 nnns volume:3 year:2024 number:1 day:26 month:08 https://dx.doi.org/10.1007/s43979-024-00101-y X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2024 1 26 08 |
allfieldsSound |
10.1007/s43979-024-00101-y doi (DE-627)SPR057101531 (SPR)s43979-024-00101-y-e DE-627 ger DE-627 rakwb eng 333.7 320 600 VZ Lei, Jia verfasserin aut Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 Wang, Ziyi verfasserin aut Zhang, Yunze verfasserin aut Ju, Min verfasserin aut Fei, Hao verfasserin aut Wang, Siyuan verfasserin aut Fu, Chengxi verfasserin aut Yuan, Xinchang verfasserin aut Fu, Qiang verfasserin aut Farid, Muhammad Usman verfasserin aut Kong, Hui verfasserin aut An, Alicia Kyoungjin verfasserin aut Deng, Runxu verfasserin aut Liu, Feng verfasserin aut Wang, Jian verfasserin (orcid)0000-0002-6800-0467 aut Enthalten in Carbon neutrality Springer Nature Singapore, 2022 3(2024), 1 vom: 26. Aug. (DE-627)1802100741 (DE-600)3119327-4 2731-3948 nnns volume:3 year:2024 number:1 day:26 month:08 https://dx.doi.org/10.1007/s43979-024-00101-y X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 3 2024 1 26 08 |
language |
English |
source |
Enthalten in Carbon neutrality 3(2024), 1 vom: 26. Aug. volume:3 year:2024 number:1 day:26 month:08 |
sourceStr |
Enthalten in Carbon neutrality 3(2024), 1 vom: 26. Aug. volume:3 year:2024 number:1 day:26 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Water electrolysis Anion exchange membrane Degradation mechanism Hydrogen |
dewey-raw |
333.7 |
isfreeaccess_bool |
true |
container_title |
Carbon neutrality |
authorswithroles_txt_mv |
Lei, Jia @@aut@@ Wang, Ziyi @@aut@@ Zhang, Yunze @@aut@@ Ju, Min @@aut@@ Fei, Hao @@aut@@ Wang, Siyuan @@aut@@ Fu, Chengxi @@aut@@ Yuan, Xinchang @@aut@@ Fu, Qiang @@aut@@ Farid, Muhammad Usman @@aut@@ Kong, Hui @@aut@@ An, Alicia Kyoungjin @@aut@@ Deng, Runxu @@aut@@ Liu, Feng @@aut@@ Wang, Jian @@aut@@ |
publishDateDaySort_date |
2024-08-26T00:00:00Z |
hierarchy_top_id |
1802100741 |
dewey-sort |
3333.7 |
id |
SPR057101531 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057101531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827064742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240827s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43979-024-00101-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057101531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43979-024-00101-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">320</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lei, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water electrolysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anion exchange membrane</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degradation mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ziyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yunze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fei, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Siyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Chengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Xinchang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farid, Muhammad Usman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Alicia Kyoungjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Runxu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6800-0467</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon neutrality</subfield><subfield code="d">Springer Nature Singapore, 2022</subfield><subfield code="g">3(2024), 1 vom: 26. Aug.</subfield><subfield code="w">(DE-627)1802100741</subfield><subfield code="w">(DE-600)3119327-4</subfield><subfield code="x">2731-3948</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43979-024-00101-y</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Lei, Jia |
spellingShingle |
Lei, Jia ddc 333.7 misc Water electrolysis misc Anion exchange membrane misc Degradation mechanism misc Hydrogen Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
authorStr |
Lei, Jia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1802100741 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 320 - Political science 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2731-3948 |
topic_title |
333.7 320 600 VZ Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production Water electrolysis (dpeaa)DE-He213 Anion exchange membrane (dpeaa)DE-He213 Degradation mechanism (dpeaa)DE-He213 Hydrogen (dpeaa)DE-He213 |
topic |
ddc 333.7 misc Water electrolysis misc Anion exchange membrane misc Degradation mechanism misc Hydrogen |
topic_unstemmed |
ddc 333.7 misc Water electrolysis misc Anion exchange membrane misc Degradation mechanism misc Hydrogen |
topic_browse |
ddc 333.7 misc Water electrolysis misc Anion exchange membrane misc Degradation mechanism misc Hydrogen |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Carbon neutrality |
hierarchy_parent_id |
1802100741 |
dewey-tens |
330 - Economics 320 - Political science 600 - Technology |
hierarchy_top_title |
Carbon neutrality |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1802100741 (DE-600)3119327-4 |
title |
Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
ctrlnum |
(DE-627)SPR057101531 (SPR)s43979-024-00101-y-e |
title_full |
Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
author_sort |
Lei, Jia |
journal |
Carbon neutrality |
journalStr |
Carbon neutrality |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Lei, Jia Wang, Ziyi Zhang, Yunze Ju, Min Fei, Hao Wang, Siyuan Fu, Chengxi Yuan, Xinchang Fu, Qiang Farid, Muhammad Usman Kong, Hui An, Alicia Kyoungjin Deng, Runxu Liu, Feng Wang, Jian |
container_volume |
3 |
class |
333.7 320 600 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Lei, Jia |
doi_str_mv |
10.1007/s43979-024-00101-y |
normlink |
(ORCID)0000-0002-6800-0467 |
normlink_prefix_str_mv |
(orcid)0000-0002-6800-0467 |
dewey-full |
333.7 320 600 |
author2-role |
verfasserin |
title_sort |
understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
title_auth |
Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
abstract |
Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. © The Author(s) 2024 |
abstractGer |
Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production |
url |
https://dx.doi.org/10.1007/s43979-024-00101-y |
remote_bool |
true |
author2 |
Wang, Ziyi Zhang, Yunze Ju, Min Fei, Hao Wang, Siyuan Fu, Chengxi Yuan, Xinchang Fu, Qiang Farid, Muhammad Usman Kong, Hui An, Alicia Kyoungjin Deng, Runxu Liu, Feng Wang, Jian |
author2Str |
Wang, Ziyi Zhang, Yunze Ju, Min Fei, Hao Wang, Siyuan Fu, Chengxi Yuan, Xinchang Fu, Qiang Farid, Muhammad Usman Kong, Hui An, Alicia Kyoungjin Deng, Runxu Liu, Feng Wang, Jian |
ppnlink |
1802100741 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s43979-024-00101-y |
up_date |
2024-08-27T04:48:52.119Z |
_version_ |
1808514817328152576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057101531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240827064742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240827s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s43979-024-00101-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057101531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s43979-024-00101-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">320</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lei, Jia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding and resolving the heterogeneous degradation of anion exchange membrane water electrolysis for large-scale hydrogen production</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Anion exchange membrane water electrolysis (AEMWE) has seen rapid advancements over the past decade due to its promising role in green hydrogen production. Ensuring long-term functionality is as crucial as optimizing performance to achieve commercial viability and industrial integration. However, few studies have systematically discussed the degradation issues of this technology. Therefore, a thorough understanding of AEMWE degradation is needed to guide the design, assembly, operation, and maintenance of the device over its lifetime. To address this gap, this review systematically overviewed the heterogeneous degradation of AEMWE across different material and interface levels, focusing on several key components including catalysts, ionomers, membranes, and gas diffusion layers. The influences of these components and their interfaces on the catalytic efficiency, active site density, and mass and electron transfer capabilities were discussed. Moreover, the impacts of operation conditions, including temperature, electrolyte composition, and clamping pressure, on the stable operation of AEMWE were assessed. Accordingly, current mitigation strategies to resolve these degradation phenomena were rigorously evaluated. By offering insights into optimizing operations, designing materials, and improving assessment protocols for AEMWE, this work will contribute to enhancing its stability for large-scale hydrogen production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water electrolysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anion exchange membrane</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degradation mechanism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrogen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ziyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yunze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ju, Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fei, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Siyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Chengxi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Xinchang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Farid, Muhammad Usman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kong, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Alicia Kyoungjin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Runxu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6800-0467</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Carbon neutrality</subfield><subfield code="d">Springer Nature Singapore, 2022</subfield><subfield code="g">3(2024), 1 vom: 26. Aug.</subfield><subfield code="w">(DE-627)1802100741</subfield><subfield code="w">(DE-600)3119327-4</subfield><subfield code="x">2731-3948</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s43979-024-00101-y</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4013157 |