lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses
Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recor...
Ausführliche Beschreibung
Autor*in: |
Zayed, Ahmed Medhat [verfasserIn] Janssens, Arne [verfasserIn] Mamouris, Pavlos [verfasserIn] Delvaux, Nicolas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical informatics and decision making - BioMed Central, 2001, 24(2024), 1 vom: 03. Sept. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:03 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s12911-024-02652-7 |
---|
Katalog-ID: |
SPR057200300 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057200300 | ||
003 | DE-627 | ||
005 | 20240904064714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240904s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12911-024-02652-7 |2 doi | |
035 | |a (DE-627)SPR057200300 | ||
035 | |a (SPR)s12911-024-02652-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.32 |2 bkl | ||
100 | 1 | |a Zayed, Ahmed Medhat |e verfasserin |4 aut | |
245 | 1 | 0 | |a lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract | ||
650 | 4 | |a Electronic medical records |7 (dpeaa)DE-He213 | |
650 | 4 | |a Clinical laboratories |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data integrity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Algorithms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data preprocessing |7 (dpeaa)DE-He213 | |
700 | 1 | |a Janssens, Arne |e verfasserin |4 aut | |
700 | 1 | |a Mamouris, Pavlos |e verfasserin |4 aut | |
700 | 1 | |a Delvaux, Nicolas |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical informatics and decision making |d BioMed Central, 2001 |g 24(2024), 1 vom: 03. Sept. |w (DE-627)328977306 |w (DE-600)2046490-3 |x 1472-6947 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:03 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12911-024-02652-7 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.32 |q VZ |
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 03 |c 09 |
author_variant |
a m z am amz a j aj p m pm n d nd |
---|---|
matchkey_str |
article:14726947:2024----::a2laaoeagrtmoatmtdlaigfersetvciialbrtrr |
hierarchy_sort_str |
2024 |
bklnumber |
44.32 |
publishDate |
2024 |
allfields |
10.1186/s12911-024-02652-7 doi (DE-627)SPR057200300 (SPR)s12911-024-02652-7-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Zayed, Ahmed Medhat verfasserin aut lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 Janssens, Arne verfasserin aut Mamouris, Pavlos verfasserin aut Delvaux, Nicolas verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 03. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:03 month:09 https://dx.doi.org/10.1186/s12911-024-02652-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 03 09 |
spelling |
10.1186/s12911-024-02652-7 doi (DE-627)SPR057200300 (SPR)s12911-024-02652-7-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Zayed, Ahmed Medhat verfasserin aut lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 Janssens, Arne verfasserin aut Mamouris, Pavlos verfasserin aut Delvaux, Nicolas verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 03. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:03 month:09 https://dx.doi.org/10.1186/s12911-024-02652-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 03 09 |
allfields_unstemmed |
10.1186/s12911-024-02652-7 doi (DE-627)SPR057200300 (SPR)s12911-024-02652-7-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Zayed, Ahmed Medhat verfasserin aut lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 Janssens, Arne verfasserin aut Mamouris, Pavlos verfasserin aut Delvaux, Nicolas verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 03. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:03 month:09 https://dx.doi.org/10.1186/s12911-024-02652-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 03 09 |
allfieldsGer |
10.1186/s12911-024-02652-7 doi (DE-627)SPR057200300 (SPR)s12911-024-02652-7-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Zayed, Ahmed Medhat verfasserin aut lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 Janssens, Arne verfasserin aut Mamouris, Pavlos verfasserin aut Delvaux, Nicolas verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 03. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:03 month:09 https://dx.doi.org/10.1186/s12911-024-02652-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 03 09 |
allfieldsSound |
10.1186/s12911-024-02652-7 doi (DE-627)SPR057200300 (SPR)s12911-024-02652-7-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Zayed, Ahmed Medhat verfasserin aut lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 Janssens, Arne verfasserin aut Mamouris, Pavlos verfasserin aut Delvaux, Nicolas verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 03. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:03 month:09 https://dx.doi.org/10.1186/s12911-024-02652-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 03 09 |
language |
English |
source |
Enthalten in BMC medical informatics and decision making 24(2024), 1 vom: 03. Sept. volume:24 year:2024 number:1 day:03 month:09 |
sourceStr |
Enthalten in BMC medical informatics and decision making 24(2024), 1 vom: 03. Sept. volume:24 year:2024 number:1 day:03 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Electronic medical records Clinical laboratories Data integrity Algorithms Data preprocessing |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
BMC medical informatics and decision making |
authorswithroles_txt_mv |
Zayed, Ahmed Medhat @@aut@@ Janssens, Arne @@aut@@ Mamouris, Pavlos @@aut@@ Delvaux, Nicolas @@aut@@ |
publishDateDaySort_date |
2024-09-03T00:00:00Z |
hierarchy_top_id |
328977306 |
dewey-sort |
3610 |
id |
SPR057200300 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057200300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240904064714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240904s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-024-02652-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057200300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-024-02652-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zayed, Ahmed Medhat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic medical records</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical laboratories</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data integrity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data preprocessing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janssens, Arne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamouris, Pavlos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delvaux, Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 03. Sept.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-024-02652-7</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Zayed, Ahmed Medhat |
spellingShingle |
Zayed, Ahmed Medhat ddc 610 bkl 44.32 misc Electronic medical records misc Clinical laboratories misc Data integrity misc Algorithms misc Data preprocessing lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
authorStr |
Zayed, Ahmed Medhat |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328977306 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1472-6947 |
topic_title |
610 VZ 44.32 bkl lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses Electronic medical records (dpeaa)DE-He213 Clinical laboratories (dpeaa)DE-He213 Data integrity (dpeaa)DE-He213 Algorithms (dpeaa)DE-He213 Data preprocessing (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.32 misc Electronic medical records misc Clinical laboratories misc Data integrity misc Algorithms misc Data preprocessing |
topic_unstemmed |
ddc 610 bkl 44.32 misc Electronic medical records misc Clinical laboratories misc Data integrity misc Algorithms misc Data preprocessing |
topic_browse |
ddc 610 bkl 44.32 misc Electronic medical records misc Clinical laboratories misc Data integrity misc Algorithms misc Data preprocessing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical informatics and decision making |
hierarchy_parent_id |
328977306 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
BMC medical informatics and decision making |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328977306 (DE-600)2046490-3 |
title |
lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
ctrlnum |
(DE-627)SPR057200300 (SPR)s12911-024-02652-7-e |
title_full |
lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
author_sort |
Zayed, Ahmed Medhat |
journal |
BMC medical informatics and decision making |
journalStr |
BMC medical informatics and decision making |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Zayed, Ahmed Medhat Janssens, Arne Mamouris, Pavlos Delvaux, Nicolas |
container_volume |
24 |
class |
610 VZ 44.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zayed, Ahmed Medhat |
doi_str_mv |
10.1186/s12911-024-02652-7 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
title_auth |
lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
abstract |
Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract © The Author(s) 2024 |
abstractGer |
Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract © The Author(s) 2024 |
abstract_unstemmed |
Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses |
url |
https://dx.doi.org/10.1186/s12911-024-02652-7 |
remote_bool |
true |
author2 |
Janssens, Arne Mamouris, Pavlos Delvaux, Nicolas |
author2Str |
Janssens, Arne Mamouris, Pavlos Delvaux, Nicolas |
ppnlink |
328977306 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12911-024-02652-7 |
up_date |
2024-09-04T05:56:27.218Z |
_version_ |
1809243845131501568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057200300</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240904064714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240904s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-024-02652-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057200300</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-024-02652-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zayed, Ahmed Medhat</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">lab2clean: a novel algorithm for automated cleaning of retrospective clinical laboratory results data for secondary uses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The integrity of clinical research and machine learning models in healthcare heavily relies on the quality of underlying clinical laboratory data. However, the preprocessing of this data to ensure its reliability and accuracy remains a significant challenge due to variations in data recording and reporting standards. Methods We developed lab2clean, a novel algorithm aimed at automating and standardizing the cleaning of retrospective clinical laboratory results data. lab2clean was implemented as two R functions specifically designed to enhance data conformance and plausibility by standardizing result formats and validating result values. The functionality and performance of the algorithm were evaluated using two extensive electronic medical record (EMR) databases, encompassing various clinical settings. Results lab2clean effectively reduced the variability of laboratory results and identified potentially erroneous records. Upon deployment, it demonstrated effective and fast standardization and validation of substantial laboratory data records. The evaluation highlighted significant improvements in the conformance and plausibility of lab results, confirming the algorithm’s efficacy in handling large-scale data sets. Conclusions lab2clean addresses the challenge of preprocessing and cleaning clinical laboratory data, a critical step in ensuring high-quality data for research outcomes. It offers a straightforward, efficient tool for researchers, improving the quality of clinical laboratory data, a major portion of healthcare data. Thereby, enhancing the reliability and reproducibility of clinical research outcomes and clinical machine learning models. Future developments aim to broaden its functionality and accessibility, solidifying its vital role in healthcare data management. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic medical records</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical laboratories</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data integrity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data preprocessing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janssens, Arne</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mamouris, Pavlos</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delvaux, Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 03. Sept.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-024-02652-7</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401119 |