PET Images Enhancement Using Deep Training of Reconstructed Images with Bayesian Penalized Likelihood Algorithm

Purpose To adopt the merits of the Bayesian Penalized Likelihood (BPL) reconstruction algorithm (incl. improved contrast recovery), a deep learning ResNet model was trained to estimate BPL-like images using the non-attenuation, non-scatter corrected PET images (PET-nonAC) as inputs. Methods Images o...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ghafari, Ali [verfasserIn]

Mofrad, Mahsa Shahrbabaki [verfasserIn]

Kasraie, Nima [verfasserIn]

Ay, Mohammad Reza [verfasserIn]

Seyyedi, Negisa [verfasserIn]

Sheikhzadeh, Peyman [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Positron emission tomography

Bayesian penalized likelihood

Image enhancement

ResNet

Anmerkung:

© Taiwanese Society of Biomedical Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Journal of medical and biological engineering - Springer Berlin Heidelberg, 2000, 44(2024), 4 vom: 12. Juli, Seite 514-521

Übergeordnetes Werk:

volume:44 ; year:2024 ; number:4 ; day:12 ; month:07 ; pages:514-521

Links:

Volltext

DOI / URN:

10.1007/s40846-024-00882-8

Katalog-ID:

SPR057203105

Nicht das Richtige dabei?

Schreiben Sie uns!