Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach
Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Ji...
Ausführliche Beschreibung
Autor*in: |
Singh, Ankit [verfasserIn] Ashuli, Adaphro [verfasserIn] C, Niraj K [verfasserIn] Dhiman, Nitesh [verfasserIn] Dubey, Chandra Shekhar [verfasserIn] Shukla, Dericks Praise [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 31(2023), 41 vom: 11. Aug., Seite 53767-53784 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2023 ; number:41 ; day:11 ; month:08 ; pages:53767-53784 |
Links: |
---|
DOI / URN: |
10.1007/s11356-023-28966-z |
---|
Katalog-ID: |
SPR057239916 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057239916 | ||
003 | DE-627 | ||
005 | 20240907064652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240907s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-023-28966-z |2 doi | |
035 | |a (DE-627)SPR057239916 | ||
035 | |a (SPR)s11356-023-28966-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 690 |q VZ |
084 | |a 43.00 |2 bkl | ||
084 | |a 43.50 |2 bkl | ||
084 | |a 58.50 |2 bkl | ||
100 | 1 | |a Singh, Ankit |e verfasserin |4 aut | |
245 | 1 | 0 | |a Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. | ||
650 | 4 | |a Landslide susceptibility |7 (dpeaa)DE-He213 | |
650 | 4 | |a Frequency ratio (FR) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Information value (IoV) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Weight of evidence (WoE) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Weighted linear combination (WLC) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tupul landslide |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ashuli, Adaphro |e verfasserin |4 aut | |
700 | 1 | |a C, Niraj K |e verfasserin |4 aut | |
700 | 1 | |a Dhiman, Nitesh |e verfasserin |4 aut | |
700 | 1 | |a Dubey, Chandra Shekhar |e verfasserin |4 aut | |
700 | 1 | |a Shukla, Dericks Praise |e verfasserin |0 (orcid)0000-0001-6546-9203 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 31(2023), 41 vom: 11. Aug., Seite 53767-53784 |w (DE-627)320517926 |w (DE-600)2014192-0 |x 1614-7499 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2023 |g number:41 |g day:11 |g month:08 |g pages:53767-53784 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11356-023-28966-z |m X:SPRINGER |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.00 |q VZ |
936 | b | k | |a 43.50 |q VZ |
936 | b | k | |a 58.50 |q VZ |
951 | |a AR | ||
952 | |d 31 |j 2023 |e 41 |b 11 |c 08 |h 53767-53784 |
author_variant |
a s as a a aa n k c nk nkc n d nd c s d cs csd d p s dp dps |
---|---|
matchkey_str |
article:16147499:2023----::vlaigastvfcosolnsieucpiiiylntemhliiariwyordrnhnrhatrpro |
hierarchy_sort_str |
2023 |
bklnumber |
43.00 43.50 58.50 |
publishDate |
2023 |
allfields |
10.1007/s11356-023-28966-z doi (DE-627)SPR057239916 (SPR)s11356-023-28966-z-e DE-627 ger DE-627 rakwb eng 333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Singh, Ankit verfasserin aut Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 Ashuli, Adaphro verfasserin aut C, Niraj K verfasserin aut Dhiman, Nitesh verfasserin aut Dubey, Chandra Shekhar verfasserin aut Shukla, Dericks Praise verfasserin (orcid)0000-0001-6546-9203 aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 31(2023), 41 vom: 11. Aug., Seite 53767-53784 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 https://dx.doi.org/10.1007/s11356-023-28966-z X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.00 VZ 43.50 VZ 58.50 VZ AR 31 2023 41 11 08 53767-53784 |
spelling |
10.1007/s11356-023-28966-z doi (DE-627)SPR057239916 (SPR)s11356-023-28966-z-e DE-627 ger DE-627 rakwb eng 333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Singh, Ankit verfasserin aut Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 Ashuli, Adaphro verfasserin aut C, Niraj K verfasserin aut Dhiman, Nitesh verfasserin aut Dubey, Chandra Shekhar verfasserin aut Shukla, Dericks Praise verfasserin (orcid)0000-0001-6546-9203 aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 31(2023), 41 vom: 11. Aug., Seite 53767-53784 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 https://dx.doi.org/10.1007/s11356-023-28966-z X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.00 VZ 43.50 VZ 58.50 VZ AR 31 2023 41 11 08 53767-53784 |
allfields_unstemmed |
10.1007/s11356-023-28966-z doi (DE-627)SPR057239916 (SPR)s11356-023-28966-z-e DE-627 ger DE-627 rakwb eng 333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Singh, Ankit verfasserin aut Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 Ashuli, Adaphro verfasserin aut C, Niraj K verfasserin aut Dhiman, Nitesh verfasserin aut Dubey, Chandra Shekhar verfasserin aut Shukla, Dericks Praise verfasserin (orcid)0000-0001-6546-9203 aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 31(2023), 41 vom: 11. Aug., Seite 53767-53784 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 https://dx.doi.org/10.1007/s11356-023-28966-z X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.00 VZ 43.50 VZ 58.50 VZ AR 31 2023 41 11 08 53767-53784 |
allfieldsGer |
10.1007/s11356-023-28966-z doi (DE-627)SPR057239916 (SPR)s11356-023-28966-z-e DE-627 ger DE-627 rakwb eng 333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Singh, Ankit verfasserin aut Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 Ashuli, Adaphro verfasserin aut C, Niraj K verfasserin aut Dhiman, Nitesh verfasserin aut Dubey, Chandra Shekhar verfasserin aut Shukla, Dericks Praise verfasserin (orcid)0000-0001-6546-9203 aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 31(2023), 41 vom: 11. Aug., Seite 53767-53784 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 https://dx.doi.org/10.1007/s11356-023-28966-z X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.00 VZ 43.50 VZ 58.50 VZ AR 31 2023 41 11 08 53767-53784 |
allfieldsSound |
10.1007/s11356-023-28966-z doi (DE-627)SPR057239916 (SPR)s11356-023-28966-z-e DE-627 ger DE-627 rakwb eng 333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Singh, Ankit verfasserin aut Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 Ashuli, Adaphro verfasserin aut C, Niraj K verfasserin aut Dhiman, Nitesh verfasserin aut Dubey, Chandra Shekhar verfasserin aut Shukla, Dericks Praise verfasserin (orcid)0000-0001-6546-9203 aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 31(2023), 41 vom: 11. Aug., Seite 53767-53784 (DE-627)320517926 (DE-600)2014192-0 1614-7499 nnns volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 https://dx.doi.org/10.1007/s11356-023-28966-z X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.00 VZ 43.50 VZ 58.50 VZ AR 31 2023 41 11 08 53767-53784 |
language |
English |
source |
Enthalten in Environmental science and pollution research 31(2023), 41 vom: 11. Aug., Seite 53767-53784 volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 |
sourceStr |
Enthalten in Environmental science and pollution research 31(2023), 41 vom: 11. Aug., Seite 53767-53784 volume:31 year:2023 number:41 day:11 month:08 pages:53767-53784 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Landslide susceptibility Frequency ratio (FR) Information value (IoV) Weight of evidence (WoE) Weighted linear combination (WLC) Tupul landslide |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Singh, Ankit @@aut@@ Ashuli, Adaphro @@aut@@ C, Niraj K @@aut@@ Dhiman, Nitesh @@aut@@ Dubey, Chandra Shekhar @@aut@@ Shukla, Dericks Praise @@aut@@ |
publishDateDaySort_date |
2023-08-11T00:00:00Z |
hierarchy_top_id |
320517926 |
dewey-sort |
3333.7 |
id |
SPR057239916 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057239916</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240907064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240907s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-023-28966-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057239916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11356-023-28966-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Ankit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslide susceptibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency ratio (FR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information value (IoV)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weight of evidence (WoE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted linear combination (WLC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tupul landslide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashuli, Adaphro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">C, Niraj K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhiman, Nitesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dubey, Chandra Shekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shukla, Dericks Praise</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6546-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">31(2023), 41 vom: 11. Aug., Seite 53767-53784</subfield><subfield code="w">(DE-627)320517926</subfield><subfield code="w">(DE-600)2014192-0</subfield><subfield code="x">1614-7499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:41</subfield><subfield code="g">day:11</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:53767-53784</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11356-023-28966-z</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2023</subfield><subfield code="e">41</subfield><subfield code="b">11</subfield><subfield code="c">08</subfield><subfield code="h">53767-53784</subfield></datafield></record></collection>
|
author |
Singh, Ankit |
spellingShingle |
Singh, Ankit ddc 333.7 bkl 43.00 bkl 43.50 bkl 58.50 misc Landslide susceptibility misc Frequency ratio (FR) misc Information value (IoV) misc Weight of evidence (WoE) misc Weighted linear combination (WLC) misc Tupul landslide Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
authorStr |
Singh, Ankit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320517926 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1614-7499 |
topic_title |
333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach Landslide susceptibility (dpeaa)DE-He213 Frequency ratio (FR) (dpeaa)DE-He213 Information value (IoV) (dpeaa)DE-He213 Weight of evidence (WoE) (dpeaa)DE-He213 Weighted linear combination (WLC) (dpeaa)DE-He213 Tupul landslide (dpeaa)DE-He213 |
topic |
ddc 333.7 bkl 43.00 bkl 43.50 bkl 58.50 misc Landslide susceptibility misc Frequency ratio (FR) misc Information value (IoV) misc Weight of evidence (WoE) misc Weighted linear combination (WLC) misc Tupul landslide |
topic_unstemmed |
ddc 333.7 bkl 43.00 bkl 43.50 bkl 58.50 misc Landslide susceptibility misc Frequency ratio (FR) misc Information value (IoV) misc Weight of evidence (WoE) misc Weighted linear combination (WLC) misc Tupul landslide |
topic_browse |
ddc 333.7 bkl 43.00 bkl 43.50 bkl 58.50 misc Landslide susceptibility misc Frequency ratio (FR) misc Information value (IoV) misc Weight of evidence (WoE) misc Weighted linear combination (WLC) misc Tupul landslide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
320517926 |
dewey-tens |
330 - Economics 690 - Building & construction |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320517926 (DE-600)2014192-0 |
title |
Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
ctrlnum |
(DE-627)SPR057239916 (SPR)s11356-023-28966-z-e |
title_full |
Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
author_sort |
Singh, Ankit |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
53767 |
author_browse |
Singh, Ankit Ashuli, Adaphro C, Niraj K Dhiman, Nitesh Dubey, Chandra Shekhar Shukla, Dericks Praise |
container_volume |
31 |
class |
333.7 690 VZ 43.00 bkl 43.50 bkl 58.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Singh, Ankit |
doi_str_mv |
10.1007/s11356-023-28966-z |
normlink |
(ORCID)0000-0001-6546-9203 |
normlink_prefix_str_mv |
(orcid)0000-0001-6546-9203 |
dewey-full |
333.7 690 |
author2-role |
verfasserin |
title_sort |
evaluating causative factors for landslide susceptibility along the imphal-jiribam railway corridor in the north-eastern part of india using a gis-based statistical approach |
title_auth |
Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
abstract |
Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
41 |
title_short |
Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach |
url |
https://dx.doi.org/10.1007/s11356-023-28966-z |
remote_bool |
true |
author2 |
Ashuli, Adaphro C, Niraj K Dhiman, Nitesh Dubey, Chandra Shekhar Shukla, Dericks Praise |
author2Str |
Ashuli, Adaphro C, Niraj K Dhiman, Nitesh Dubey, Chandra Shekhar Shukla, Dericks Praise |
ppnlink |
320517926 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-023-28966-z |
up_date |
2024-09-07T04:48:46.087Z |
_version_ |
1809511377625153536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057239916</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240907064652.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240907s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-023-28966-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057239916</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11356-023-28966-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Ankit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Northeast part of India is experiencing an increase in infrastructure projects as well as landslides. This study aims to prepare the landslide susceptibility map of Tamenglong and Senapati districts, Manipur, India, and evaluates the state of landslide susceptibility along the Imphal-Jiribam railway corridor. Efficient statistical methods such as frequency ratio (FR), information value (IoV), weight of evidence (WoE), and weighted linear combination (WLC) were used in model preparation. A total of 322 landslide points were randomly divided into training (70%) and testing (30%) datasets. Nine causative factors were utilized for landslide susceptibility mapping (LSM). The importance of which was obtained using the information gain (IG) method. FR, IoV, WoE, and WLC were used to prepare the LSM using the training datasets and nine causative factors. Moreover, the accuracy and consistency were evaluated using AUC-ROC, precision, recall, overall accuracy (OA), balanced accuracy (BA), and F-score. The validation results showed that all methods performed well with the highest AUC and precision values of 0.913 and 0.95, respectively, for the IoV method, while the WLC method had the highest OA, BA, and F-score values of 0.808, 0.81, and 0.812, respectively. Finally, the results from LSM were used to evaluate the state of landslide susceptibility along the Imphal-Jiribam railway corridor. The results showed that 34% of the areas had high and very high susceptibility, while 40% were under less and significantly less susceptibility. The Tupul landslide area lay in medium susceptibility where the disastrous landslide occurred on 30 June 2022. Susceptibility values around the Noney and Khongsag railway station ranged from high to very high susceptibility. Thus, the study manifests the need for LSM preparation in rapidly constructing areas, which in turn will help the policymakers and planners for adopting strategies to minimize losses caused due to landslides.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Landslide susceptibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency ratio (FR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information value (IoV)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weight of evidence (WoE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weighted linear combination (WLC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tupul landslide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ashuli, Adaphro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">C, Niraj K</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhiman, Nitesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dubey, Chandra Shekhar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shukla, Dericks Praise</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-6546-9203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">31(2023), 41 vom: 11. Aug., Seite 53767-53784</subfield><subfield code="w">(DE-627)320517926</subfield><subfield code="w">(DE-600)2014192-0</subfield><subfield code="x">1614-7499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:41</subfield><subfield code="g">day:11</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:53767-53784</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11356-023-28966-z</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.50</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.50</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2023</subfield><subfield code="e">41</subfield><subfield code="b">11</subfield><subfield code="c">08</subfield><subfield code="h">53767-53784</subfield></datafield></record></collection>
|
score |
7.399728 |