Generating generalized zero-shot learning based on dual-path feature enhancement

Abstract Generalized zero-shot learning (GZSL) can classify both seen and unseen class samples, which plays a significant role in practical applications such as emerging species recognition and medical image recognition. However, most existing GZSL methods directly use the pre-trained deep model to...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Chang, Xinyi [verfasserIn]

Wang, Zhen [verfasserIn]

Liu, Wenhao [verfasserIn]

Gao, Limeng [verfasserIn]

Yan, Bingshuai [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Generalized zero-shot learning

Variational autoencoders

Generative adversarial networks

Feature enhancement

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Multimedia systems - Springer Berlin Heidelberg, 1993, 30(2024), 5 vom: 19. Sept.

Übergeordnetes Werk:

volume:30 ; year:2024 ; number:5 ; day:19 ; month:09

Links:

Volltext

DOI / URN:

10.1007/s00530-024-01485-8

Katalog-ID:

SPR05738004X

Nicht das Richtige dabei?

Schreiben Sie uns!