Quantitative modeling of perovskite-based direct X-ray flat panel detectors
Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influ...
Ausführliche Beschreibung
Autor*in: |
Song, Zihao [verfasserIn] Wang, Gaozhu [verfasserIn] Pang, Jincong [verfasserIn] Zheng, Zhiping [verfasserIn] Xu, Ling [verfasserIn] Zhou, Ying [verfasserIn] Niu, Guangda [verfasserIn] Tang, Jiang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of optoelectronics - Higher Education Press, 2012, 17(2024), 1 vom: 26. Sept. |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2024 ; number:1 ; day:26 ; month:09 |
Links: |
---|
DOI / URN: |
10.1007/s12200-024-00136-0 |
---|
Katalog-ID: |
SPR057477639 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057477639 | ||
003 | DE-627 | ||
005 | 20240927064741.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240927s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12200-024-00136-0 |2 doi | |
035 | |a (DE-627)SPR057477639 | ||
035 | |a (SPR)s12200-024-00136-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Song, Zihao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract | ||
650 | 4 | |a DQE |7 (dpeaa)DE-He213 | |
650 | 4 | |a X-ray |7 (dpeaa)DE-He213 | |
650 | 4 | |a Detector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Perovskite |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Gaozhu |e verfasserin |4 aut | |
700 | 1 | |a Pang, Jincong |e verfasserin |4 aut | |
700 | 1 | |a Zheng, Zhiping |e verfasserin |4 aut | |
700 | 1 | |a Xu, Ling |e verfasserin |4 aut | |
700 | 1 | |a Zhou, Ying |e verfasserin |4 aut | |
700 | 1 | |a Niu, Guangda |e verfasserin |4 aut | |
700 | 1 | |a Tang, Jiang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of optoelectronics |d Higher Education Press, 2012 |g 17(2024), 1 vom: 26. Sept. |h Online-Ressource |w (DE-627)718611446 |w (DE-600)2660533-8 |w (DE-576)433374136 |x 2095-2767 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2024 |g number:1 |g day:26 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12200-024-00136-0 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2024 |e 1 |b 26 |c 09 |
author_variant |
z s zs g w gw j p jp z z zz l x lx y z yz g n gn j t jt |
---|---|
matchkey_str |
article:20952767:2024----::uniaieoeigfeosieaedrcxaf |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s12200-024-00136-0 doi (DE-627)SPR057477639 (SPR)s12200-024-00136-0-e DE-627 ger DE-627 rakwb eng 620 VZ 530 VZ Song, Zihao verfasserin aut Quantitative modeling of perovskite-based direct X-ray flat panel detectors 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Wang, Gaozhu verfasserin aut Pang, Jincong verfasserin aut Zheng, Zhiping verfasserin aut Xu, Ling verfasserin aut Zhou, Ying verfasserin aut Niu, Guangda verfasserin aut Tang, Jiang verfasserin aut Enthalten in Frontiers of optoelectronics Higher Education Press, 2012 17(2024), 1 vom: 26. Sept. Online-Ressource (DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 2095-2767 nnns volume:17 year:2024 number:1 day:26 month:09 https://dx.doi.org/10.1007/s12200-024-00136-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 26 09 |
spelling |
10.1007/s12200-024-00136-0 doi (DE-627)SPR057477639 (SPR)s12200-024-00136-0-e DE-627 ger DE-627 rakwb eng 620 VZ 530 VZ Song, Zihao verfasserin aut Quantitative modeling of perovskite-based direct X-ray flat panel detectors 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Wang, Gaozhu verfasserin aut Pang, Jincong verfasserin aut Zheng, Zhiping verfasserin aut Xu, Ling verfasserin aut Zhou, Ying verfasserin aut Niu, Guangda verfasserin aut Tang, Jiang verfasserin aut Enthalten in Frontiers of optoelectronics Higher Education Press, 2012 17(2024), 1 vom: 26. Sept. Online-Ressource (DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 2095-2767 nnns volume:17 year:2024 number:1 day:26 month:09 https://dx.doi.org/10.1007/s12200-024-00136-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 26 09 |
allfields_unstemmed |
10.1007/s12200-024-00136-0 doi (DE-627)SPR057477639 (SPR)s12200-024-00136-0-e DE-627 ger DE-627 rakwb eng 620 VZ 530 VZ Song, Zihao verfasserin aut Quantitative modeling of perovskite-based direct X-ray flat panel detectors 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Wang, Gaozhu verfasserin aut Pang, Jincong verfasserin aut Zheng, Zhiping verfasserin aut Xu, Ling verfasserin aut Zhou, Ying verfasserin aut Niu, Guangda verfasserin aut Tang, Jiang verfasserin aut Enthalten in Frontiers of optoelectronics Higher Education Press, 2012 17(2024), 1 vom: 26. Sept. Online-Ressource (DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 2095-2767 nnns volume:17 year:2024 number:1 day:26 month:09 https://dx.doi.org/10.1007/s12200-024-00136-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 26 09 |
allfieldsGer |
10.1007/s12200-024-00136-0 doi (DE-627)SPR057477639 (SPR)s12200-024-00136-0-e DE-627 ger DE-627 rakwb eng 620 VZ 530 VZ Song, Zihao verfasserin aut Quantitative modeling of perovskite-based direct X-ray flat panel detectors 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Wang, Gaozhu verfasserin aut Pang, Jincong verfasserin aut Zheng, Zhiping verfasserin aut Xu, Ling verfasserin aut Zhou, Ying verfasserin aut Niu, Guangda verfasserin aut Tang, Jiang verfasserin aut Enthalten in Frontiers of optoelectronics Higher Education Press, 2012 17(2024), 1 vom: 26. Sept. Online-Ressource (DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 2095-2767 nnns volume:17 year:2024 number:1 day:26 month:09 https://dx.doi.org/10.1007/s12200-024-00136-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 26 09 |
allfieldsSound |
10.1007/s12200-024-00136-0 doi (DE-627)SPR057477639 (SPR)s12200-024-00136-0-e DE-627 ger DE-627 rakwb eng 620 VZ 530 VZ Song, Zihao verfasserin aut Quantitative modeling of perovskite-based direct X-ray flat panel detectors 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 Wang, Gaozhu verfasserin aut Pang, Jincong verfasserin aut Zheng, Zhiping verfasserin aut Xu, Ling verfasserin aut Zhou, Ying verfasserin aut Niu, Guangda verfasserin aut Tang, Jiang verfasserin aut Enthalten in Frontiers of optoelectronics Higher Education Press, 2012 17(2024), 1 vom: 26. Sept. Online-Ressource (DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 2095-2767 nnns volume:17 year:2024 number:1 day:26 month:09 https://dx.doi.org/10.1007/s12200-024-00136-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2024 1 26 09 |
language |
English |
source |
Enthalten in Frontiers of optoelectronics 17(2024), 1 vom: 26. Sept. volume:17 year:2024 number:1 day:26 month:09 |
sourceStr |
Enthalten in Frontiers of optoelectronics 17(2024), 1 vom: 26. Sept. volume:17 year:2024 number:1 day:26 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DQE X-ray Detector Perovskite |
dewey-raw |
620 |
isfreeaccess_bool |
true |
container_title |
Frontiers of optoelectronics |
authorswithroles_txt_mv |
Song, Zihao @@aut@@ Wang, Gaozhu @@aut@@ Pang, Jincong @@aut@@ Zheng, Zhiping @@aut@@ Xu, Ling @@aut@@ Zhou, Ying @@aut@@ Niu, Guangda @@aut@@ Tang, Jiang @@aut@@ |
publishDateDaySort_date |
2024-09-26T00:00:00Z |
hierarchy_top_id |
718611446 |
dewey-sort |
3620 |
id |
SPR057477639 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057477639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240927064741.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240927s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12200-024-00136-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057477639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12200-024-00136-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Zihao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative modeling of perovskite-based direct X-ray flat panel detectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DQE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gaozhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pang, Jincong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Zhiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Ling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Guangda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of optoelectronics</subfield><subfield code="d">Higher Education Press, 2012</subfield><subfield code="g">17(2024), 1 vom: 26. Sept.</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)718611446</subfield><subfield code="w">(DE-600)2660533-8</subfield><subfield code="w">(DE-576)433374136</subfield><subfield code="x">2095-2767</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12200-024-00136-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Song, Zihao |
spellingShingle |
Song, Zihao ddc 620 ddc 530 misc DQE misc X-ray misc Detector misc Perovskite Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
authorStr |
Song, Zihao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)718611446 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2095-2767 |
topic_title |
620 VZ 530 VZ Quantitative modeling of perovskite-based direct X-ray flat panel detectors DQE (dpeaa)DE-He213 X-ray (dpeaa)DE-He213 Detector (dpeaa)DE-He213 Perovskite (dpeaa)DE-He213 |
topic |
ddc 620 ddc 530 misc DQE misc X-ray misc Detector misc Perovskite |
topic_unstemmed |
ddc 620 ddc 530 misc DQE misc X-ray misc Detector misc Perovskite |
topic_browse |
ddc 620 ddc 530 misc DQE misc X-ray misc Detector misc Perovskite |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of optoelectronics |
hierarchy_parent_id |
718611446 |
dewey-tens |
620 - Engineering 530 - Physics |
hierarchy_top_title |
Frontiers of optoelectronics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)718611446 (DE-600)2660533-8 (DE-576)433374136 |
title |
Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
ctrlnum |
(DE-627)SPR057477639 (SPR)s12200-024-00136-0-e |
title_full |
Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
author_sort |
Song, Zihao |
journal |
Frontiers of optoelectronics |
journalStr |
Frontiers of optoelectronics |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Song, Zihao Wang, Gaozhu Pang, Jincong Zheng, Zhiping Xu, Ling Zhou, Ying Niu, Guangda Tang, Jiang |
container_volume |
17 |
class |
620 VZ 530 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Zihao |
doi_str_mv |
10.1007/s12200-024-00136-0 |
dewey-full |
620 530 |
author2-role |
verfasserin |
title_sort |
quantitative modeling of perovskite-based direct x-ray flat panel detectors |
title_auth |
Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
abstract |
Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract © The Author(s) 2024 |
abstractGer |
Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract © The Author(s) 2024 |
abstract_unstemmed |
Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2050 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2472 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Quantitative modeling of perovskite-based direct X-ray flat panel detectors |
url |
https://dx.doi.org/10.1007/s12200-024-00136-0 |
remote_bool |
true |
author2 |
Wang, Gaozhu Pang, Jincong Zheng, Zhiping Xu, Ling Zhou, Ying Niu, Guangda Tang, Jiang |
author2Str |
Wang, Gaozhu Pang, Jincong Zheng, Zhiping Xu, Ling Zhou, Ying Niu, Guangda Tang, Jiang |
ppnlink |
718611446 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12200-024-00136-0 |
up_date |
2024-09-27T04:49:52.673Z |
_version_ |
1811323386778877952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057477639</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240927064741.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240927s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12200-024-00136-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057477639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12200-024-00136-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Zihao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative modeling of perovskite-based direct X-ray flat panel detectors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Direct X-ray detectors based on semiconductors have drawn great attention from researchers in the pursuing of higher imaging quality. However, many previous works focused on the optimization of detection performances but seldomly watch them in an overall view and analyze how they will influence the detective quantum efficiency (DQE) value. Here, we propose a numerical model which shows the quantitative relationship between DQE and the properties of X-ray detectors and electric circuits. Our results point out that pursuing high sensitivity only is meaningless. To reduce the medical X-ray dose by 80%, the requirement for X-ray sensitivity is only at a magnitude of $ 10^{3} $ $ μCGy^{−1} $⋅$ cm^{−2} $. To achieve the DQE = 0.7 at X-ray sensitivity air from 1248 to 8171 $ μCGy^{−1} $air⋅$ cm^{−2} $, the requirements on dark current density ranges from 10 to 100 nA⋅$ cm^{−2} $ and the fluctuation of current density should fall in 0.21 to 1.37 nA⋅$ cm^{−2} $. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DQE</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-ray</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gaozhu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pang, Jincong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Zhiping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Ling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Guangda</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Jiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of optoelectronics</subfield><subfield code="d">Higher Education Press, 2012</subfield><subfield code="g">17(2024), 1 vom: 26. Sept.</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)718611446</subfield><subfield code="w">(DE-600)2660533-8</subfield><subfield code="w">(DE-576)433374136</subfield><subfield code="x">2095-2767</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12200-024-00136-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.3988514 |