OntoXAI: a semantic web rule language approach for explainable artificial intelligence

Abstract Machine learning revolutionizes accuracy in diverse fields such as disease diagnosis, speech understanding, and sentiment analysis. However, its intricate architecture often obscures the decision-making process, creating a “black box” that hinders trust and limits its potential. This lack o...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sharma, Sumit [verfasserIn]

Jain, Sarika [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Rule-based reasoning

Explainable artificial intelligence

Semantic web rule language

Ontology learning

Knowledge discovery

Dengue disease classification

Health information systems

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Cluster computing - Springer US, 1998, 27(2024), 10 vom: 07. Aug., Seite 14951-14975

Übergeordnetes Werk:

volume:27 ; year:2024 ; number:10 ; day:07 ; month:08 ; pages:14951-14975

Links:

Volltext

DOI / URN:

10.1007/s10586-024-04682-2

Katalog-ID:

SPR057490775

Nicht das Richtige dabei?

Schreiben Sie uns!