Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome
Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were...
Ausführliche Beschreibung
Autor*in: |
Shi, Jianyou [verfasserIn] Chen, Zhiyuan [verfasserIn] Zhang, Yuanfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Lipids in health and disease - BioMed Central, 2002, 23(2024), 1 vom: 27. Sept. |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2024 ; number:1 ; day:27 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s12944-024-02272-0 |
---|
Katalog-ID: |
SPR057500606 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057500606 | ||
003 | DE-627 | ||
005 | 20240928072508.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240928s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12944-024-02272-0 |2 doi | |
035 | |a (DE-627)SPR057500606 | ||
035 | |a (SPR)s12944-024-02272-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |a 570 |q VZ |
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Shi, Jianyou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. | ||
650 | 4 | |a NHANES |7 (dpeaa)DE-He213 | |
650 | 4 | |a A body shape index |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metabolic syndrome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mortality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Zhiyuan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yuanfeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Lipids in health and disease |d BioMed Central, 2002 |g 23(2024), 1 vom: 27. Sept. |w (DE-627)355987694 |w (DE-600)2091381-3 |x 1476-511X |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2024 |g number:1 |g day:27 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12944-024-02272-0 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.00 |q VZ |
951 | |a AR | ||
952 | |d 23 |j 2024 |e 1 |b 27 |c 09 |
author_variant |
j s js z c zc y z yz |
---|---|
matchkey_str |
article:1476511X:2024----::soitosewebdftnhooercnieadotltaogniiu |
hierarchy_sort_str |
2024 |
bklnumber |
44.00 |
publishDate |
2024 |
allfields |
10.1186/s12944-024-02272-0 doi (DE-627)SPR057500606 (SPR)s12944-024-02272-0-e DE-627 ger DE-627 rakwb eng 610 570 VZ 44.00 bkl Shi, Jianyou verfasserin aut Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 Chen, Zhiyuan verfasserin aut Zhang, Yuanfeng verfasserin aut Enthalten in Lipids in health and disease BioMed Central, 2002 23(2024), 1 vom: 27. Sept. (DE-627)355987694 (DE-600)2091381-3 1476-511X nnns volume:23 year:2024 number:1 day:27 month:09 https://dx.doi.org/10.1186/s12944-024-02272-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.00 VZ AR 23 2024 1 27 09 |
spelling |
10.1186/s12944-024-02272-0 doi (DE-627)SPR057500606 (SPR)s12944-024-02272-0-e DE-627 ger DE-627 rakwb eng 610 570 VZ 44.00 bkl Shi, Jianyou verfasserin aut Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 Chen, Zhiyuan verfasserin aut Zhang, Yuanfeng verfasserin aut Enthalten in Lipids in health and disease BioMed Central, 2002 23(2024), 1 vom: 27. Sept. (DE-627)355987694 (DE-600)2091381-3 1476-511X nnns volume:23 year:2024 number:1 day:27 month:09 https://dx.doi.org/10.1186/s12944-024-02272-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.00 VZ AR 23 2024 1 27 09 |
allfields_unstemmed |
10.1186/s12944-024-02272-0 doi (DE-627)SPR057500606 (SPR)s12944-024-02272-0-e DE-627 ger DE-627 rakwb eng 610 570 VZ 44.00 bkl Shi, Jianyou verfasserin aut Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 Chen, Zhiyuan verfasserin aut Zhang, Yuanfeng verfasserin aut Enthalten in Lipids in health and disease BioMed Central, 2002 23(2024), 1 vom: 27. Sept. (DE-627)355987694 (DE-600)2091381-3 1476-511X nnns volume:23 year:2024 number:1 day:27 month:09 https://dx.doi.org/10.1186/s12944-024-02272-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.00 VZ AR 23 2024 1 27 09 |
allfieldsGer |
10.1186/s12944-024-02272-0 doi (DE-627)SPR057500606 (SPR)s12944-024-02272-0-e DE-627 ger DE-627 rakwb eng 610 570 VZ 44.00 bkl Shi, Jianyou verfasserin aut Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 Chen, Zhiyuan verfasserin aut Zhang, Yuanfeng verfasserin aut Enthalten in Lipids in health and disease BioMed Central, 2002 23(2024), 1 vom: 27. Sept. (DE-627)355987694 (DE-600)2091381-3 1476-511X nnns volume:23 year:2024 number:1 day:27 month:09 https://dx.doi.org/10.1186/s12944-024-02272-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.00 VZ AR 23 2024 1 27 09 |
allfieldsSound |
10.1186/s12944-024-02272-0 doi (DE-627)SPR057500606 (SPR)s12944-024-02272-0-e DE-627 ger DE-627 rakwb eng 610 570 VZ 44.00 bkl Shi, Jianyou verfasserin aut Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 Chen, Zhiyuan verfasserin aut Zhang, Yuanfeng verfasserin aut Enthalten in Lipids in health and disease BioMed Central, 2002 23(2024), 1 vom: 27. Sept. (DE-627)355987694 (DE-600)2091381-3 1476-511X nnns volume:23 year:2024 number:1 day:27 month:09 https://dx.doi.org/10.1186/s12944-024-02272-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.00 VZ AR 23 2024 1 27 09 |
language |
English |
source |
Enthalten in Lipids in health and disease 23(2024), 1 vom: 27. Sept. volume:23 year:2024 number:1 day:27 month:09 |
sourceStr |
Enthalten in Lipids in health and disease 23(2024), 1 vom: 27. Sept. volume:23 year:2024 number:1 day:27 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
NHANES A body shape index Metabolic syndrome Mortality |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
Lipids in health and disease |
authorswithroles_txt_mv |
Shi, Jianyou @@aut@@ Chen, Zhiyuan @@aut@@ Zhang, Yuanfeng @@aut@@ |
publishDateDaySort_date |
2024-09-27T00:00:00Z |
hierarchy_top_id |
355987694 |
dewey-sort |
3610 |
id |
SPR057500606 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057500606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240928072508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240928s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12944-024-02272-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057500606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12944-024-02272-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Jianyou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NHANES</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A body shape index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Lipids in health and disease</subfield><subfield code="d">BioMed Central, 2002</subfield><subfield code="g">23(2024), 1 vom: 27. Sept.</subfield><subfield code="w">(DE-627)355987694</subfield><subfield code="w">(DE-600)2091381-3</subfield><subfield code="x">1476-511X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12944-024-02272-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Shi, Jianyou |
spellingShingle |
Shi, Jianyou ddc 610 bkl 44.00 misc NHANES misc A body shape index misc Metabolic syndrome misc Mortality Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
authorStr |
Shi, Jianyou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355987694 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1476-511X |
topic_title |
610 570 VZ 44.00 bkl Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome NHANES (dpeaa)DE-He213 A body shape index (dpeaa)DE-He213 Metabolic syndrome (dpeaa)DE-He213 Mortality (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.00 misc NHANES misc A body shape index misc Metabolic syndrome misc Mortality |
topic_unstemmed |
ddc 610 bkl 44.00 misc NHANES misc A body shape index misc Metabolic syndrome misc Mortality |
topic_browse |
ddc 610 bkl 44.00 misc NHANES misc A body shape index misc Metabolic syndrome misc Mortality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Lipids in health and disease |
hierarchy_parent_id |
355987694 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Lipids in health and disease |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355987694 (DE-600)2091381-3 |
title |
Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
ctrlnum |
(DE-627)SPR057500606 (SPR)s12944-024-02272-0-e |
title_full |
Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
author_sort |
Shi, Jianyou |
journal |
Lipids in health and disease |
journalStr |
Lipids in health and disease |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Shi, Jianyou Chen, Zhiyuan Zhang, Yuanfeng |
container_volume |
23 |
class |
610 570 VZ 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shi, Jianyou |
doi_str_mv |
10.1186/s12944-024-02272-0 |
dewey-full |
610 570 |
author2-role |
verfasserin |
title_sort |
associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
title_auth |
Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
abstract |
Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. © The Author(s) 2024 |
abstractGer |
Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. © The Author(s) 2024 |
abstract_unstemmed |
Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome |
url |
https://dx.doi.org/10.1186/s12944-024-02272-0 |
remote_bool |
true |
author2 |
Chen, Zhiyuan Zhang, Yuanfeng |
author2Str |
Chen, Zhiyuan Zhang, Yuanfeng |
ppnlink |
355987694 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12944-024-02272-0 |
up_date |
2024-09-28T05:27:20.887Z |
_version_ |
1811416341163278336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057500606</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240928072508.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240928s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12944-024-02272-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057500606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12944-024-02272-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Jianyou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The distribution of body fat and metabolic health may contribute to the onset of metabolic syndrome (MetS), but the associations between body fat anthropometric indices (AIs) and mortality in individuals with MetS remain unclear. Methods Participants aged 18 years or older with MetS were recruited from the NHANES 1999–2018. The body fat anthropometric indices included the a body shape index (ABSI), body roundness index (BRI), cardiometabolic index (CMI), visceral adiposity index (VAI), waist triglyceride index (WTI), lipid accumulation product (LAP), atherogenic index of plasma (AIP), and triglyceride‒glucose (TyG) index. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATPIII) criteria. Mortality data were obtained from the National Death Index through December 31, 2019. Results Data were collected from 8,379 individuals with MetS, with a median follow-up of 8.5 years, of whom 1,698 died from all causes and 568 from the CCD. The random survival forest (RSF) analysis indicated that the ABSI had the strongest predictive power for both all-cause mortality and CCD mortality among the eight body fat AIs. After adjusting for multiple variables, the ABSI was found to be linearly and positively associated with all-cause and CCD mortality in individuals with MetS. Participants in the highest quartile of ABSI had an increased risk of all-cause (HR = 1.773 [1.419–2.215]) and CCD (HR = 1.735 [1.267–2.375]) mortality compared with those in the lowest quartile. Furthermore, the ABSI predicted areas under the curve (AUCs) of 0.735, 0.723, 0.718, and 0.725 for all-cause mortality at 3, 5, 10, and 15 years, respectively, and 0.774, 0.758, 0.725, and 0.715 for CCD mortality, respectively. Conclusion Among eight body fat AIs, the ABSI exhibited the strongest predictive power for mortality in individuals with MetS. Higher ABSI values significantly increased all-cause mortality and CCD mortality in participants with MetS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NHANES</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">A body shape index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic syndrome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mortality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Lipids in health and disease</subfield><subfield code="d">BioMed Central, 2002</subfield><subfield code="g">23(2024), 1 vom: 27. Sept.</subfield><subfield code="w">(DE-627)355987694</subfield><subfield code="w">(DE-600)2091381-3</subfield><subfield code="x">1476-511X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:27</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12944-024-02272-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">27</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401143 |