Flexible neuromorphic transistors for neuromorphic computing and perception application
Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are man...
Ausführliche Beschreibung
Autor*in: |
Ke, Shuo [verfasserIn] Zhu, Yixin [verfasserIn] Fu, Chuanyu [verfasserIn] Mao, Huiwu [verfasserIn] Shi, Kailu [verfasserIn] Qiao, Lesheng [verfasserIn] Wan, Qing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Moore and more - Springer Nature Singapore, 2024, 1(2024), 1 vom: 29. Sept. |
---|---|
Übergeordnetes Werk: |
volume:1 ; year:2024 ; number:1 ; day:29 ; month:09 |
Links: |
---|
DOI / URN: |
10.1007/s44275-024-00009-w |
---|
Katalog-ID: |
SPR057518173 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057518173 | ||
003 | DE-627 | ||
005 | 20240929064703.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240929s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s44275-024-00009-w |2 doi | |
035 | |a (DE-627)SPR057518173 | ||
035 | |a (SPR)s44275-024-00009-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ke, Shuo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Flexible neuromorphic transistors for neuromorphic computing and perception application |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. | ||
650 | 4 | |a Neuromorphic device |7 (dpeaa)DE-He213 | |
650 | 4 | |a Flexible neuromorphic transistor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Neuromorphic computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Artificial perception system |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhu, Yixin |e verfasserin |4 aut | |
700 | 1 | |a Fu, Chuanyu |e verfasserin |4 aut | |
700 | 1 | |a Mao, Huiwu |e verfasserin |4 aut | |
700 | 1 | |a Shi, Kailu |e verfasserin |4 aut | |
700 | 1 | |a Qiao, Lesheng |e verfasserin |4 aut | |
700 | 1 | |a Wan, Qing |e verfasserin |0 (orcid)0000-0003-4588-7592 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Moore and more |d Springer Nature Singapore, 2024 |g 1(2024), 1 vom: 29. Sept. |h Online-Ressource |w (DE-627)1891044583 |w (DE-600)3189115-9 |x 3004-8680 |7 nnns |
773 | 1 | 8 | |g volume:1 |g year:2024 |g number:1 |g day:29 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s44275-024-00009-w |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 1 |j 2024 |e 1 |b 29 |c 09 |
author_variant |
s k sk y z yz c f cf h m hm k s ks l q lq q w qw |
---|---|
matchkey_str |
article:30048680:2024----::lxbeermrhcrnitrfrermrhcoptna |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s44275-024-00009-w doi (DE-627)SPR057518173 (SPR)s44275-024-00009-w-e DE-627 ger DE-627 rakwb eng Ke, Shuo verfasserin aut Flexible neuromorphic transistors for neuromorphic computing and perception application 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 Zhu, Yixin verfasserin aut Fu, Chuanyu verfasserin aut Mao, Huiwu verfasserin aut Shi, Kailu verfasserin aut Qiao, Lesheng verfasserin aut Wan, Qing verfasserin (orcid)0000-0003-4588-7592 aut Enthalten in Moore and more Springer Nature Singapore, 2024 1(2024), 1 vom: 29. Sept. Online-Ressource (DE-627)1891044583 (DE-600)3189115-9 3004-8680 nnns volume:1 year:2024 number:1 day:29 month:09 https://dx.doi.org/10.1007/s44275-024-00009-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER AR 1 2024 1 29 09 |
spelling |
10.1007/s44275-024-00009-w doi (DE-627)SPR057518173 (SPR)s44275-024-00009-w-e DE-627 ger DE-627 rakwb eng Ke, Shuo verfasserin aut Flexible neuromorphic transistors for neuromorphic computing and perception application 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 Zhu, Yixin verfasserin aut Fu, Chuanyu verfasserin aut Mao, Huiwu verfasserin aut Shi, Kailu verfasserin aut Qiao, Lesheng verfasserin aut Wan, Qing verfasserin (orcid)0000-0003-4588-7592 aut Enthalten in Moore and more Springer Nature Singapore, 2024 1(2024), 1 vom: 29. Sept. Online-Ressource (DE-627)1891044583 (DE-600)3189115-9 3004-8680 nnns volume:1 year:2024 number:1 day:29 month:09 https://dx.doi.org/10.1007/s44275-024-00009-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER AR 1 2024 1 29 09 |
allfields_unstemmed |
10.1007/s44275-024-00009-w doi (DE-627)SPR057518173 (SPR)s44275-024-00009-w-e DE-627 ger DE-627 rakwb eng Ke, Shuo verfasserin aut Flexible neuromorphic transistors for neuromorphic computing and perception application 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 Zhu, Yixin verfasserin aut Fu, Chuanyu verfasserin aut Mao, Huiwu verfasserin aut Shi, Kailu verfasserin aut Qiao, Lesheng verfasserin aut Wan, Qing verfasserin (orcid)0000-0003-4588-7592 aut Enthalten in Moore and more Springer Nature Singapore, 2024 1(2024), 1 vom: 29. Sept. Online-Ressource (DE-627)1891044583 (DE-600)3189115-9 3004-8680 nnns volume:1 year:2024 number:1 day:29 month:09 https://dx.doi.org/10.1007/s44275-024-00009-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER AR 1 2024 1 29 09 |
allfieldsGer |
10.1007/s44275-024-00009-w doi (DE-627)SPR057518173 (SPR)s44275-024-00009-w-e DE-627 ger DE-627 rakwb eng Ke, Shuo verfasserin aut Flexible neuromorphic transistors for neuromorphic computing and perception application 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 Zhu, Yixin verfasserin aut Fu, Chuanyu verfasserin aut Mao, Huiwu verfasserin aut Shi, Kailu verfasserin aut Qiao, Lesheng verfasserin aut Wan, Qing verfasserin (orcid)0000-0003-4588-7592 aut Enthalten in Moore and more Springer Nature Singapore, 2024 1(2024), 1 vom: 29. Sept. Online-Ressource (DE-627)1891044583 (DE-600)3189115-9 3004-8680 nnns volume:1 year:2024 number:1 day:29 month:09 https://dx.doi.org/10.1007/s44275-024-00009-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER AR 1 2024 1 29 09 |
allfieldsSound |
10.1007/s44275-024-00009-w doi (DE-627)SPR057518173 (SPR)s44275-024-00009-w-e DE-627 ger DE-627 rakwb eng Ke, Shuo verfasserin aut Flexible neuromorphic transistors for neuromorphic computing and perception application 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 Zhu, Yixin verfasserin aut Fu, Chuanyu verfasserin aut Mao, Huiwu verfasserin aut Shi, Kailu verfasserin aut Qiao, Lesheng verfasserin aut Wan, Qing verfasserin (orcid)0000-0003-4588-7592 aut Enthalten in Moore and more Springer Nature Singapore, 2024 1(2024), 1 vom: 29. Sept. Online-Ressource (DE-627)1891044583 (DE-600)3189115-9 3004-8680 nnns volume:1 year:2024 number:1 day:29 month:09 https://dx.doi.org/10.1007/s44275-024-00009-w X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER AR 1 2024 1 29 09 |
language |
English |
source |
Enthalten in Moore and more 1(2024), 1 vom: 29. Sept. volume:1 year:2024 number:1 day:29 month:09 |
sourceStr |
Enthalten in Moore and more 1(2024), 1 vom: 29. Sept. volume:1 year:2024 number:1 day:29 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neuromorphic device Flexible neuromorphic transistor Neuromorphic computing Artificial perception system |
isfreeaccess_bool |
true |
container_title |
Moore and more |
authorswithroles_txt_mv |
Ke, Shuo @@aut@@ Zhu, Yixin @@aut@@ Fu, Chuanyu @@aut@@ Mao, Huiwu @@aut@@ Shi, Kailu @@aut@@ Qiao, Lesheng @@aut@@ Wan, Qing @@aut@@ |
publishDateDaySort_date |
2024-09-29T00:00:00Z |
hierarchy_top_id |
1891044583 |
id |
SPR057518173 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057518173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240929064703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240929s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44275-024-00009-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057518173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44275-024-00009-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ke, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flexible neuromorphic transistors for neuromorphic computing and perception application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic device</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible neuromorphic transistor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial perception system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Chuanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Huiwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Kailu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Lesheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4588-7592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Moore and more</subfield><subfield code="d">Springer Nature Singapore, 2024</subfield><subfield code="g">1(2024), 1 vom: 29. Sept.</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)1891044583</subfield><subfield code="w">(DE-600)3189115-9</subfield><subfield code="x">3004-8680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44275-024-00009-w</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Ke, Shuo |
spellingShingle |
Ke, Shuo misc Neuromorphic device misc Flexible neuromorphic transistor misc Neuromorphic computing misc Artificial perception system Flexible neuromorphic transistors for neuromorphic computing and perception application |
authorStr |
Ke, Shuo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1891044583 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
3004-8680 |
topic_title |
Flexible neuromorphic transistors for neuromorphic computing and perception application Neuromorphic device (dpeaa)DE-He213 Flexible neuromorphic transistor (dpeaa)DE-He213 Neuromorphic computing (dpeaa)DE-He213 Artificial perception system (dpeaa)DE-He213 |
topic |
misc Neuromorphic device misc Flexible neuromorphic transistor misc Neuromorphic computing misc Artificial perception system |
topic_unstemmed |
misc Neuromorphic device misc Flexible neuromorphic transistor misc Neuromorphic computing misc Artificial perception system |
topic_browse |
misc Neuromorphic device misc Flexible neuromorphic transistor misc Neuromorphic computing misc Artificial perception system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Moore and more |
hierarchy_parent_id |
1891044583 |
hierarchy_top_title |
Moore and more |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1891044583 (DE-600)3189115-9 |
title |
Flexible neuromorphic transistors for neuromorphic computing and perception application |
ctrlnum |
(DE-627)SPR057518173 (SPR)s44275-024-00009-w-e |
title_full |
Flexible neuromorphic transistors for neuromorphic computing and perception application |
author_sort |
Ke, Shuo |
journal |
Moore and more |
journalStr |
Moore and more |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Ke, Shuo Zhu, Yixin Fu, Chuanyu Mao, Huiwu Shi, Kailu Qiao, Lesheng Wan, Qing |
container_volume |
1 |
format_se |
Elektronische Aufsätze |
author-letter |
Ke, Shuo |
doi_str_mv |
10.1007/s44275-024-00009-w |
normlink |
(ORCID)0000-0003-4588-7592 |
normlink_prefix_str_mv |
(orcid)0000-0003-4588-7592 |
author2-role |
verfasserin |
title_sort |
flexible neuromorphic transistors for neuromorphic computing and perception application |
title_auth |
Flexible neuromorphic transistors for neuromorphic computing and perception application |
abstract |
Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. © The Author(s) 2024 |
abstractGer |
Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER |
container_issue |
1 |
title_short |
Flexible neuromorphic transistors for neuromorphic computing and perception application |
url |
https://dx.doi.org/10.1007/s44275-024-00009-w |
remote_bool |
true |
author2 |
Zhu, Yixin Fu, Chuanyu Mao, Huiwu Shi, Kailu Qiao, Lesheng Wan, Qing |
author2Str |
Zhu, Yixin Fu, Chuanyu Mao, Huiwu Shi, Kailu Qiao, Lesheng Wan, Qing |
ppnlink |
1891044583 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s44275-024-00009-w |
up_date |
2024-09-29T04:48:19.020Z |
_version_ |
1811504482506244096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057518173</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240929064703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240929s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s44275-024-00009-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057518173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s44275-024-00009-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ke, Shuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flexible neuromorphic transistors for neuromorphic computing and perception application</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Emulating brain functionality with neuromorphic devices is an emerging field of research. It is extensively considered as the first step to overcome the limitations of conventional von Neumann systems and build artificial intelligent systems. Currently, most neuromorphic transistors are manufactured on rigid substrates, which are difficult to bend and cannot closely fit soft human skin, limiting their appliction scope. The emergence and evolution of flexible electronic devices address a plethora of application and scenario demands. Particularly, the introduction of flexible neuromorphic transistors injects fresh vitality into neuromorphic computing and perception, symbolizing a significant step towards overcoming the limitations of conventional computational models and fostering the development of more intelligent wearable devices. Herein, the recent developments in felxible neuromorphic transistors are summarized and their applications in neuromorphic computing and artificial perception systems are highlighted. The future prospects and challenges of felxible neuromorphic transistors are also discussed. We believe developments in felxible neuromorphic transistors will shed light on future advances in wearable artificial intelligent systems, humanoid robotics and neural repair technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic device</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flexible neuromorphic transistor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuromorphic computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial perception system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yixin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Chuanyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mao, Huiwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Kailu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Lesheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Qing</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4588-7592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Moore and more</subfield><subfield code="d">Springer Nature Singapore, 2024</subfield><subfield code="g">1(2024), 1 vom: 29. Sept.</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)1891044583</subfield><subfield code="w">(DE-600)3189115-9</subfield><subfield code="x">3004-8680</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s44275-024-00009-w</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.400337 |