The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.
Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considere...
Ausführliche Beschreibung
Autor*in: |
Waterman, J.L. [verfasserIn] Shenk, J.L. [verfasserIn] Halazonetis, T.D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1995 |
---|
Anmerkung: |
© European Molecular Biology Organization 1995 |
---|
Übergeordnetes Werk: |
Enthalten in: The EMBO Journal - Nature Publishing Group UK, 2023, 14(1995), 3 vom: 01. Feb., Seite 512-519 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:1995 ; number:3 ; day:01 ; month:02 ; pages:512-519 |
Links: |
---|
DOI / URN: |
10.1002/j.1460-2075.1995.tb07027.x |
---|
Katalog-ID: |
SPR05761119X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05761119X | ||
003 | DE-627 | ||
005 | 20241001065502.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241001s1995 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1002/j.1460-2075.1995.tb07027.x |2 doi | |
035 | |a (DE-627)SPR05761119X | ||
035 | |a (SPR)j.1460-2075.1995.tb07027.x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Waterman, J.L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. |
264 | 1 | |c 1995 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © European Molecular Biology Organization 1995 | ||
520 | |a Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. | ||
700 | 1 | |a Shenk, J.L. |e verfasserin |4 aut | |
700 | 1 | |a Halazonetis, T.D. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The EMBO Journal |d Nature Publishing Group UK, 2023 |g 14(1995), 3 vom: 01. Feb., Seite 512-519 |w (DE-627)266022529 |w (DE-600)1467419-1 |x 1460-2075 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:1995 |g number:3 |g day:01 |g month:02 |g pages:512-519 |
856 | 4 | 0 | |u https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x |m X:SPRINGER |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 1995 |e 3 |b 01 |c 02 |h 512-519 |
author_variant |
j w jw j s js t h th |
---|---|
matchkey_str |
article:14602075:1995----::hdhdasmerote5ttaeiainoanadtscnomt |
hierarchy_sort_str |
1995 |
publishDate |
1995 |
allfields |
10.1002/j.1460-2075.1995.tb07027.x doi (DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e DE-627 ger DE-627 rakwb eng Waterman, J.L. verfasserin aut The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. 1995 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Molecular Biology Organization 1995 Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. Shenk, J.L. verfasserin aut Halazonetis, T.D. verfasserin aut Enthalten in The EMBO Journal Nature Publishing Group UK, 2023 14(1995), 3 vom: 01. Feb., Seite 512-519 (DE-627)266022529 (DE-600)1467419-1 1460-2075 nnns volume:14 year:1995 number:3 day:01 month:02 pages:512-519 https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 1995 3 01 02 512-519 |
spelling |
10.1002/j.1460-2075.1995.tb07027.x doi (DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e DE-627 ger DE-627 rakwb eng Waterman, J.L. verfasserin aut The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. 1995 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Molecular Biology Organization 1995 Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. Shenk, J.L. verfasserin aut Halazonetis, T.D. verfasserin aut Enthalten in The EMBO Journal Nature Publishing Group UK, 2023 14(1995), 3 vom: 01. Feb., Seite 512-519 (DE-627)266022529 (DE-600)1467419-1 1460-2075 nnns volume:14 year:1995 number:3 day:01 month:02 pages:512-519 https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 1995 3 01 02 512-519 |
allfields_unstemmed |
10.1002/j.1460-2075.1995.tb07027.x doi (DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e DE-627 ger DE-627 rakwb eng Waterman, J.L. verfasserin aut The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. 1995 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Molecular Biology Organization 1995 Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. Shenk, J.L. verfasserin aut Halazonetis, T.D. verfasserin aut Enthalten in The EMBO Journal Nature Publishing Group UK, 2023 14(1995), 3 vom: 01. Feb., Seite 512-519 (DE-627)266022529 (DE-600)1467419-1 1460-2075 nnns volume:14 year:1995 number:3 day:01 month:02 pages:512-519 https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 1995 3 01 02 512-519 |
allfieldsGer |
10.1002/j.1460-2075.1995.tb07027.x doi (DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e DE-627 ger DE-627 rakwb eng Waterman, J.L. verfasserin aut The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. 1995 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Molecular Biology Organization 1995 Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. Shenk, J.L. verfasserin aut Halazonetis, T.D. verfasserin aut Enthalten in The EMBO Journal Nature Publishing Group UK, 2023 14(1995), 3 vom: 01. Feb., Seite 512-519 (DE-627)266022529 (DE-600)1467419-1 1460-2075 nnns volume:14 year:1995 number:3 day:01 month:02 pages:512-519 https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 1995 3 01 02 512-519 |
allfieldsSound |
10.1002/j.1460-2075.1995.tb07027.x doi (DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e DE-627 ger DE-627 rakwb eng Waterman, J.L. verfasserin aut The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. 1995 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © European Molecular Biology Organization 1995 Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. Shenk, J.L. verfasserin aut Halazonetis, T.D. verfasserin aut Enthalten in The EMBO Journal Nature Publishing Group UK, 2023 14(1995), 3 vom: 01. Feb., Seite 512-519 (DE-627)266022529 (DE-600)1467419-1 1460-2075 nnns volume:14 year:1995 number:3 day:01 month:02 pages:512-519 https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 1995 3 01 02 512-519 |
language |
English |
source |
Enthalten in The EMBO Journal 14(1995), 3 vom: 01. Feb., Seite 512-519 volume:14 year:1995 number:3 day:01 month:02 pages:512-519 |
sourceStr |
Enthalten in The EMBO Journal 14(1995), 3 vom: 01. Feb., Seite 512-519 volume:14 year:1995 number:3 day:01 month:02 pages:512-519 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
isfreeaccess_bool |
false |
container_title |
The EMBO Journal |
authorswithroles_txt_mv |
Waterman, J.L. @@aut@@ Shenk, J.L. @@aut@@ Halazonetis, T.D. @@aut@@ |
publishDateDaySort_date |
1995-02-01T00:00:00Z |
hierarchy_top_id |
266022529 |
id |
SPR05761119X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05761119X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241001065502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241001s1995 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/j.1460-2075.1995.tb07027.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05761119X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.1460-2075.1995.tb07027.x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waterman, J.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© European Molecular Biology Organization 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shenk, J.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halazonetis, T.D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EMBO Journal</subfield><subfield code="d">Nature Publishing Group UK, 2023</subfield><subfield code="g">14(1995), 3 vom: 01. Feb., Seite 512-519</subfield><subfield code="w">(DE-627)266022529</subfield><subfield code="w">(DE-600)1467419-1</subfield><subfield code="x">1460-2075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:512-519</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">1995</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">512-519</subfield></datafield></record></collection>
|
author |
Waterman, J.L. |
spellingShingle |
Waterman, J.L. The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. |
authorStr |
Waterman, J.L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266022529 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1460-2075 |
topic_title |
The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The EMBO Journal |
hierarchy_parent_id |
266022529 |
hierarchy_top_title |
The EMBO Journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266022529 (DE-600)1467419-1 |
title |
The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. |
ctrlnum |
(DE-627)SPR05761119X (SPR)j.1460-2075.1995.tb07027.x-e |
title_full |
The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding |
author_sort |
Waterman, J.L. |
journal |
The EMBO Journal |
journalStr |
The EMBO Journal |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1995 |
contenttype_str_mv |
txt |
container_start_page |
512 |
author_browse |
Waterman, J.L. Shenk, J.L. Halazonetis, T.D. |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Waterman, J.L. |
doi_str_mv |
10.1002/j.1460-2075.1995.tb07027.x |
author2-role |
verfasserin |
title_sort |
the dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon dna binding |
title_auth |
The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. |
abstract |
Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. © European Molecular Biology Organization 1995 |
abstractGer |
Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. © European Molecular Biology Organization 1995 |
abstract_unstemmed |
Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state. © European Molecular Biology Organization 1995 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_252 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2050 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
3 |
title_short |
The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding. |
url |
https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x |
remote_bool |
true |
author2 |
Shenk, J.L. Halazonetis, T.D. |
author2Str |
Shenk, J.L. Halazonetis, T.D. |
ppnlink |
266022529 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1002/j.1460-2075.1995.tb07027.x |
up_date |
2024-10-01T04:59:02.101Z |
_version_ |
1811686350758346752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05761119X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241001065502.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241001s1995 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/j.1460-2075.1995.tb07027.x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05761119X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)j.1460-2075.1995.tb07027.x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Waterman, J.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The dihedral symmetry of the p53 tetramerization domain mandates a conformational switch upon DNA binding.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1995</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© European Molecular Biology Organization 1995</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The p53 tumor suppressor forms stable tetramers, whose DNA binding activity is allosterically regulated. The tetramerization domain is contained within the C‐terminus (residues 323‐355) and its three‐dimensional structure exhibits dihedral symmetry, such that a p53 tetramer can be considered a dimer of dimers. Under conditions where monomeric p53 fails to bind DNA, we studied the effects of p53 C‐terminal mutations on DNA binding. Residues 322‐355 were sufficient to drive DNA binding of p53 as a tetramer. Within this region residues predicted by the three‐dimensional structure to stabilize tetramerization, such as Arg337 and Phe341, were critical for DNA binding. Furthermore, substitution of Leu344 caused p53 to dissociate into DNA binding‐competent dimers, consistent with the location of this residue at the dimer‐dimer interface. The p53 DNA site contains two inverted repeats juxtaposed to a second pair of inverted repeats. Thus, the four repeats exhibit cyclic‐translation symmetry and cannot be recognized simultaneously by four dihedrally symmetric p53 DNA binding domains. The discrepancy may be resolved by flexible linkers between the p53 DNA binding and tetramerization domains. When these linkers were deleted p53 exhibited novel DNA binding properties consistent with an inability to recognize four contiguous DNA repeats. Allosteric regulation of p53 DNA binding may involve repositioning the DNA binding domains from a dihedrally symmetric state to a DNA‐bound asymmetric state.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shenk, J.L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Halazonetis, T.D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The EMBO Journal</subfield><subfield code="d">Nature Publishing Group UK, 2023</subfield><subfield code="g">14(1995), 3 vom: 01. Feb., Seite 512-519</subfield><subfield code="w">(DE-627)266022529</subfield><subfield code="w">(DE-600)1467419-1</subfield><subfield code="x">1460-2075</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:1995</subfield><subfield code="g">number:3</subfield><subfield code="g">day:01</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:512-519</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1002/j.1460-2075.1995.tb07027.x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">1995</subfield><subfield code="e">3</subfield><subfield code="b">01</subfield><subfield code="c">02</subfield><subfield code="h">512-519</subfield></datafield></record></collection>
|
score |
7.4022093 |