Machine learning in oncological pharmacogenomics: advancing personalized chemotherapy

Abstract This review analyzes the application of machine learning (ML) in oncological pharmacogenomics, focusing on customizing chemotherapy treatments. It explores how ML can analyze extensive genomic, proteomic, and other omics datasets to identify genetic patterns associated with drug responses....
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Avci, Cigir Biray [verfasserIn]

Bagca, Bakiye Goker [verfasserIn]

Shademan, Behrouz [verfasserIn]

Takanlou, Leila Sabour [verfasserIn]

Takanlou, Maryam Sabour [verfasserIn]

Nourazarian, Alireza [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Machine learning (ML)

Personalized chemotherapy

Oncological pharmacogenomics

Genetic variability

Treatment personalization

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Functional & integrative genomics - Springer Berlin Heidelberg, 2000, 24(2024), 5 vom: Okt.

Übergeordnetes Werk:

volume:24 ; year:2024 ; number:5 ; month:10

Links:

Volltext

DOI / URN:

10.1007/s10142-024-01462-4

Katalog-ID:

SPR057662126

Nicht das Richtige dabei?

Schreiben Sie uns!