Geometric quantum complexity of bosonic oscillator systems
Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal numbe...
Ausführliche Beschreibung
Autor*in: |
Chowdhury, Satyaki [verfasserIn] Bojowald, Martin [verfasserIn] Mielczarek, Jakub [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of high energy physics - Springer Berlin Heidelberg, 1997, 2024(2024), 10 vom: 04. Okt. |
---|---|
Übergeordnetes Werk: |
volume:2024 ; year:2024 ; number:10 ; day:04 ; month:10 |
Links: |
---|
DOI / URN: |
10.1007/JHEP10(2024)048 |
---|
Katalog-ID: |
SPR057673861 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057673861 | ||
003 | DE-627 | ||
005 | 20241005064742.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241005s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP10(2024)048 |2 doi | |
035 | |a (DE-627)SPR057673861 | ||
035 | |a (SPR)JHEP10(2024)048-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.46 |2 bkl | ||
100 | 1 | |a Chowdhury, Satyaki |e verfasserin |0 (orcid)0000-0002-8823-9934 |4 aut | |
245 | 1 | 0 | |a Geometric quantum complexity of bosonic oscillator systems |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. | ||
650 | 4 | |a AdS-CFT Correspondence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gauge-Gravity Correspondence |7 (dpeaa)DE-He213 | |
700 | 1 | |a Bojowald, Martin |e verfasserin |0 (orcid)0000-0002-7271-5617 |4 aut | |
700 | 1 | |a Mielczarek, Jakub |e verfasserin |0 (orcid)0000-0002-4533-6371 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Springer Berlin Heidelberg, 1997 |g 2024(2024), 10 vom: 04. Okt. |w (DE-627)320910571 |w (DE-600)2027350-2 |x 1029-8479 |7 nnns |
773 | 1 | 8 | |g volume:2024 |g year:2024 |g number:10 |g day:04 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/JHEP10(2024)048 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.46 |q VZ |
951 | |a AR | ||
952 | |d 2024 |j 2024 |e 10 |b 04 |c 10 |
author_variant |
s c sc m b mb j m jm |
---|---|
matchkey_str |
article:10298479:2024----::emtiqatmopeiyfooioc |
hierarchy_sort_str |
2024 |
bklnumber |
33.46 |
publishDate |
2024 |
allfields |
10.1007/JHEP10(2024)048 doi (DE-627)SPR057673861 (SPR)JHEP10(2024)048-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chowdhury, Satyaki verfasserin (orcid)0000-0002-8823-9934 aut Geometric quantum complexity of bosonic oscillator systems 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 Bojowald, Martin verfasserin (orcid)0000-0002-7271-5617 aut Mielczarek, Jakub verfasserin (orcid)0000-0002-4533-6371 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 10 vom: 04. Okt. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:10 day:04 month:10 https://dx.doi.org/10.1007/JHEP10(2024)048 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 10 04 10 |
spelling |
10.1007/JHEP10(2024)048 doi (DE-627)SPR057673861 (SPR)JHEP10(2024)048-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chowdhury, Satyaki verfasserin (orcid)0000-0002-8823-9934 aut Geometric quantum complexity of bosonic oscillator systems 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 Bojowald, Martin verfasserin (orcid)0000-0002-7271-5617 aut Mielczarek, Jakub verfasserin (orcid)0000-0002-4533-6371 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 10 vom: 04. Okt. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:10 day:04 month:10 https://dx.doi.org/10.1007/JHEP10(2024)048 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 10 04 10 |
allfields_unstemmed |
10.1007/JHEP10(2024)048 doi (DE-627)SPR057673861 (SPR)JHEP10(2024)048-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chowdhury, Satyaki verfasserin (orcid)0000-0002-8823-9934 aut Geometric quantum complexity of bosonic oscillator systems 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 Bojowald, Martin verfasserin (orcid)0000-0002-7271-5617 aut Mielczarek, Jakub verfasserin (orcid)0000-0002-4533-6371 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 10 vom: 04. Okt. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:10 day:04 month:10 https://dx.doi.org/10.1007/JHEP10(2024)048 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 10 04 10 |
allfieldsGer |
10.1007/JHEP10(2024)048 doi (DE-627)SPR057673861 (SPR)JHEP10(2024)048-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chowdhury, Satyaki verfasserin (orcid)0000-0002-8823-9934 aut Geometric quantum complexity of bosonic oscillator systems 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 Bojowald, Martin verfasserin (orcid)0000-0002-7271-5617 aut Mielczarek, Jakub verfasserin (orcid)0000-0002-4533-6371 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 10 vom: 04. Okt. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:10 day:04 month:10 https://dx.doi.org/10.1007/JHEP10(2024)048 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 10 04 10 |
allfieldsSound |
10.1007/JHEP10(2024)048 doi (DE-627)SPR057673861 (SPR)JHEP10(2024)048-e DE-627 ger DE-627 rakwb eng 530 VZ 33.46 bkl Chowdhury, Satyaki verfasserin (orcid)0000-0002-8823-9934 aut Geometric quantum complexity of bosonic oscillator systems 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 Bojowald, Martin verfasserin (orcid)0000-0002-7271-5617 aut Mielczarek, Jakub verfasserin (orcid)0000-0002-4533-6371 aut Enthalten in Journal of high energy physics Springer Berlin Heidelberg, 1997 2024(2024), 10 vom: 04. Okt. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2024 year:2024 number:10 day:04 month:10 https://dx.doi.org/10.1007/JHEP10(2024)048 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 33.46 VZ AR 2024 2024 10 04 10 |
language |
English |
source |
Enthalten in Journal of high energy physics 2024(2024), 10 vom: 04. Okt. volume:2024 year:2024 number:10 day:04 month:10 |
sourceStr |
Enthalten in Journal of high energy physics 2024(2024), 10 vom: 04. Okt. volume:2024 year:2024 number:10 day:04 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
AdS-CFT Correspondence Gauge-Gravity Correspondence |
dewey-raw |
530 |
isfreeaccess_bool |
true |
container_title |
Journal of high energy physics |
authorswithroles_txt_mv |
Chowdhury, Satyaki @@aut@@ Bojowald, Martin @@aut@@ Mielczarek, Jakub @@aut@@ |
publishDateDaySort_date |
2024-10-04T00:00:00Z |
hierarchy_top_id |
320910571 |
dewey-sort |
3530 |
id |
SPR057673861 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057673861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241005064742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241005s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP10(2024)048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057673861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP10(2024)048-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chowdhury, Satyaki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8823-9934</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric quantum complexity of bosonic oscillator systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge-Gravity Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bojowald, Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7271-5617</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mielczarek, Jakub</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4533-6371</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 10 vom: 04. Okt.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:10</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP10(2024)048</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">10</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Chowdhury, Satyaki |
spellingShingle |
Chowdhury, Satyaki ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Gauge-Gravity Correspondence Geometric quantum complexity of bosonic oscillator systems |
authorStr |
Chowdhury, Satyaki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-8479 |
topic_title |
530 VZ 33.46 bkl Geometric quantum complexity of bosonic oscillator systems AdS-CFT Correspondence (dpeaa)DE-He213 Gauge-Gravity Correspondence (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Gauge-Gravity Correspondence |
topic_unstemmed |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Gauge-Gravity Correspondence |
topic_browse |
ddc 530 bkl 33.46 misc AdS-CFT Correspondence misc Gauge-Gravity Correspondence |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of high energy physics |
hierarchy_parent_id |
320910571 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of high energy physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Geometric quantum complexity of bosonic oscillator systems |
ctrlnum |
(DE-627)SPR057673861 (SPR)JHEP10(2024)048-e |
title_full |
Geometric quantum complexity of bosonic oscillator systems |
author_sort |
Chowdhury, Satyaki |
journal |
Journal of high energy physics |
journalStr |
Journal of high energy physics |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Chowdhury, Satyaki Bojowald, Martin Mielczarek, Jakub |
container_volume |
2024 |
class |
530 VZ 33.46 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chowdhury, Satyaki |
doi_str_mv |
10.1007/JHEP10(2024)048 |
normlink |
(ORCID)0000-0002-8823-9934 (ORCID)0000-0002-7271-5617 (ORCID)0000-0002-4533-6371 |
normlink_prefix_str_mv |
(orcid)0000-0002-8823-9934 (orcid)0000-0002-7271-5617 (orcid)0000-0002-4533-6371 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
geometric quantum complexity of bosonic oscillator systems |
title_auth |
Geometric quantum complexity of bosonic oscillator systems |
abstract |
Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. © The Author(s) 2024 |
abstractGer |
Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. © The Author(s) 2024 |
abstract_unstemmed |
Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Geometric quantum complexity of bosonic oscillator systems |
url |
https://dx.doi.org/10.1007/JHEP10(2024)048 |
remote_bool |
true |
author2 |
Bojowald, Martin Mielczarek, Jakub |
author2Str |
Bojowald, Martin Mielczarek, Jakub |
ppnlink |
320910571 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP10(2024)048 |
up_date |
2024-10-05T07:44:13.224Z |
_version_ |
1812059131177074688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057673861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241005064742.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241005s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP10(2024)048</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057673861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP10(2024)048-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chowdhury, Satyaki</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8823-9934</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric quantum complexity of bosonic oscillator systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AdS-CFT Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gauge-Gravity Correspondence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bojowald, Martin</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7271-5617</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mielczarek, Jakub</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4533-6371</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">2024(2024), 10 vom: 04. Okt.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2024</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:10</subfield><subfield code="g">day:04</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP10(2024)048</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.46</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2024</subfield><subfield code="j">2024</subfield><subfield code="e">10</subfield><subfield code="b">04</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401127 |