Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes
Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that o...
Ausführliche Beschreibung
Autor*in: |
De Boeck, Paul [verfasserIn] DeKay, Michael L. [verfasserIn] Pek, Jolynn [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Psychometrika - Springer US, 1936, 89(2024), 3 vom: 04. Juli, Seite 1055-1073 |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2024 ; number:3 ; day:04 ; month:07 ; pages:1055-1073 |
Links: |
---|
DOI / URN: |
10.1007/s11336-024-09980-7 |
---|
Katalog-ID: |
SPR057699968 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057699968 | ||
003 | DE-627 | ||
005 | 20241008064701.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241008s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11336-024-09980-7 |2 doi | |
035 | |a (DE-627)SPR057699968 | ||
035 | |a (SPR)s11336-024-09980-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 150 |q VZ |
084 | |a 77.03 |2 bkl | ||
100 | 1 | |a De Boeck, Paul |e verfasserin |4 aut | |
245 | 1 | 0 | |a Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. | ||
650 | 4 | |a adventitious error |7 (dpeaa)DE-He213 | |
650 | 4 | |a covariance matrices |7 (dpeaa)DE-He213 | |
650 | 4 | |a inferential uncertainty |7 (dpeaa)DE-He213 | |
650 | 4 | |a heterogeneity of effects |7 (dpeaa)DE-He213 | |
650 | 4 | |a power |7 (dpeaa)DE-He213 | |
650 | 4 | |a measurement uncertainty |7 (dpeaa)DE-He213 | |
700 | 1 | |a DeKay, Michael L. |e verfasserin |4 aut | |
700 | 1 | |a Pek, Jolynn |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Psychometrika |d Springer US, 1936 |g 89(2024), 3 vom: 04. Juli, Seite 1055-1073 |w (DE-627)487892054 |w (DE-600)2188500-X |x 1860-0980 |7 nnns |
773 | 1 | 8 | |g volume:89 |g year:2024 |g number:3 |g day:04 |g month:07 |g pages:1055-1073 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11336-024-09980-7 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_2574 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 77.03 |q VZ |
951 | |a AR | ||
952 | |d 89 |j 2024 |e 3 |b 04 |c 07 |h 1055-1073 |
author_variant |
b p d bp bpd m l d ml mld j p jp |
---|---|
matchkey_str |
article:18600980:2024----::dettosroadtipiainfretnrltosewevralsnfro |
hierarchy_sort_str |
2024 |
bklnumber |
77.03 |
publishDate |
2024 |
allfields |
10.1007/s11336-024-09980-7 doi (DE-627)SPR057699968 (SPR)s11336-024-09980-7-e DE-627 ger DE-627 rakwb eng 150 VZ 77.03 bkl De Boeck, Paul verfasserin aut Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 DeKay, Michael L. verfasserin aut Pek, Jolynn verfasserin aut Enthalten in Psychometrika Springer US, 1936 89(2024), 3 vom: 04. Juli, Seite 1055-1073 (DE-627)487892054 (DE-600)2188500-X 1860-0980 nnns volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 https://dx.doi.org/10.1007/s11336-024-09980-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 77.03 VZ AR 89 2024 3 04 07 1055-1073 |
spelling |
10.1007/s11336-024-09980-7 doi (DE-627)SPR057699968 (SPR)s11336-024-09980-7-e DE-627 ger DE-627 rakwb eng 150 VZ 77.03 bkl De Boeck, Paul verfasserin aut Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 DeKay, Michael L. verfasserin aut Pek, Jolynn verfasserin aut Enthalten in Psychometrika Springer US, 1936 89(2024), 3 vom: 04. Juli, Seite 1055-1073 (DE-627)487892054 (DE-600)2188500-X 1860-0980 nnns volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 https://dx.doi.org/10.1007/s11336-024-09980-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 77.03 VZ AR 89 2024 3 04 07 1055-1073 |
allfields_unstemmed |
10.1007/s11336-024-09980-7 doi (DE-627)SPR057699968 (SPR)s11336-024-09980-7-e DE-627 ger DE-627 rakwb eng 150 VZ 77.03 bkl De Boeck, Paul verfasserin aut Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 DeKay, Michael L. verfasserin aut Pek, Jolynn verfasserin aut Enthalten in Psychometrika Springer US, 1936 89(2024), 3 vom: 04. Juli, Seite 1055-1073 (DE-627)487892054 (DE-600)2188500-X 1860-0980 nnns volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 https://dx.doi.org/10.1007/s11336-024-09980-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 77.03 VZ AR 89 2024 3 04 07 1055-1073 |
allfieldsGer |
10.1007/s11336-024-09980-7 doi (DE-627)SPR057699968 (SPR)s11336-024-09980-7-e DE-627 ger DE-627 rakwb eng 150 VZ 77.03 bkl De Boeck, Paul verfasserin aut Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 DeKay, Michael L. verfasserin aut Pek, Jolynn verfasserin aut Enthalten in Psychometrika Springer US, 1936 89(2024), 3 vom: 04. Juli, Seite 1055-1073 (DE-627)487892054 (DE-600)2188500-X 1860-0980 nnns volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 https://dx.doi.org/10.1007/s11336-024-09980-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 77.03 VZ AR 89 2024 3 04 07 1055-1073 |
allfieldsSound |
10.1007/s11336-024-09980-7 doi (DE-627)SPR057699968 (SPR)s11336-024-09980-7-e DE-627 ger DE-627 rakwb eng 150 VZ 77.03 bkl De Boeck, Paul verfasserin aut Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 DeKay, Michael L. verfasserin aut Pek, Jolynn verfasserin aut Enthalten in Psychometrika Springer US, 1936 89(2024), 3 vom: 04. Juli, Seite 1055-1073 (DE-627)487892054 (DE-600)2188500-X 1860-0980 nnns volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 https://dx.doi.org/10.1007/s11336-024-09980-7 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 77.03 VZ AR 89 2024 3 04 07 1055-1073 |
language |
English |
source |
Enthalten in Psychometrika 89(2024), 3 vom: 04. Juli, Seite 1055-1073 volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 |
sourceStr |
Enthalten in Psychometrika 89(2024), 3 vom: 04. Juli, Seite 1055-1073 volume:89 year:2024 number:3 day:04 month:07 pages:1055-1073 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
adventitious error covariance matrices inferential uncertainty heterogeneity of effects power measurement uncertainty |
dewey-raw |
150 |
isfreeaccess_bool |
true |
container_title |
Psychometrika |
authorswithroles_txt_mv |
De Boeck, Paul @@aut@@ DeKay, Michael L. @@aut@@ Pek, Jolynn @@aut@@ |
publishDateDaySort_date |
2024-07-04T00:00:00Z |
hierarchy_top_id |
487892054 |
dewey-sort |
3150 |
id |
SPR057699968 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057699968</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241008064701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241008s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11336-024-09980-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057699968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11336-024-09980-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Boeck, Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adventitious error</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariance matrices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inferential uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneity of effects</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurement uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeKay, Michael L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pek, Jolynn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Psychometrika</subfield><subfield code="d">Springer US, 1936</subfield><subfield code="g">89(2024), 3 vom: 04. Juli, Seite 1055-1073</subfield><subfield code="w">(DE-627)487892054</subfield><subfield code="w">(DE-600)2188500-X</subfield><subfield code="x">1860-0980</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1055-1073</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11336-024-09980-7</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2574</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.03</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2024</subfield><subfield code="e">3</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">1055-1073</subfield></datafield></record></collection>
|
author |
De Boeck, Paul |
spellingShingle |
De Boeck, Paul ddc 150 bkl 77.03 misc adventitious error misc covariance matrices misc inferential uncertainty misc heterogeneity of effects misc power misc measurement uncertainty Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
authorStr |
De Boeck, Paul |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)487892054 |
format |
electronic Article |
dewey-ones |
150 - Psychology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1860-0980 |
topic_title |
150 VZ 77.03 bkl Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes adventitious error (dpeaa)DE-He213 covariance matrices (dpeaa)DE-He213 inferential uncertainty (dpeaa)DE-He213 heterogeneity of effects (dpeaa)DE-He213 power (dpeaa)DE-He213 measurement uncertainty (dpeaa)DE-He213 |
topic |
ddc 150 bkl 77.03 misc adventitious error misc covariance matrices misc inferential uncertainty misc heterogeneity of effects misc power misc measurement uncertainty |
topic_unstemmed |
ddc 150 bkl 77.03 misc adventitious error misc covariance matrices misc inferential uncertainty misc heterogeneity of effects misc power misc measurement uncertainty |
topic_browse |
ddc 150 bkl 77.03 misc adventitious error misc covariance matrices misc inferential uncertainty misc heterogeneity of effects misc power misc measurement uncertainty |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Psychometrika |
hierarchy_parent_id |
487892054 |
dewey-tens |
150 - Psychology |
hierarchy_top_title |
Psychometrika |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)487892054 (DE-600)2188500-X |
title |
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
ctrlnum |
(DE-627)SPR057699968 (SPR)s11336-024-09980-7-e |
title_full |
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
author_sort |
De Boeck, Paul |
journal |
Psychometrika |
journalStr |
Psychometrika |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
100 - Philosophy & psychology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
1055 |
author_browse |
De Boeck, Paul DeKay, Michael L. Pek, Jolynn |
container_volume |
89 |
class |
150 VZ 77.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
De Boeck, Paul |
doi_str_mv |
10.1007/s11336-024-09980-7 |
dewey-full |
150 |
author2-role |
verfasserin |
title_sort |
adventitious error and its implications for testing relations between variables and for composite measurement outcomes |
title_auth |
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
abstract |
Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. © The Author(s) 2024 |
abstractGer |
Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_2574 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes |
url |
https://dx.doi.org/10.1007/s11336-024-09980-7 |
remote_bool |
true |
author2 |
DeKay, Michael L. Pek, Jolynn |
author2Str |
DeKay, Michael L. Pek, Jolynn |
ppnlink |
487892054 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11336-024-09980-7 |
up_date |
2024-10-08T05:15:06.425Z |
_version_ |
1812321540691197952 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057699968</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241008064701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241008s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11336-024-09980-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057699968</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11336-024-09980-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">150</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Boeck, Paul</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wu and Browne (Psychometrika 80(3):571–600, 2015. https://doi.org/10.1007/s11336-015-9451-3; henceforth W &B) introduced the notion of adventitious error to explicitly take into account approximate goodness of fit of covariance structure models (CSMs). Adventitious error supposes that observed covariance matrices are not directly sampled from a theoretical population covariance matrix but from an operational population covariance matrix. This operational matrix is randomly distorted from the theoretical matrix due to differences in study implementations. W &B showed how adventitious error is linked to the root mean square error of approximation (RMSEA) and how the standard errors (SEs) of parameter estimates are augmented. Our contribution is to consider adventitious error as a general phenomenon and to illustrate its consequences. Using simulations, we illustrate that its impact on SEs can be generalized to pairwise relations between variables beyond the CSM context. Using derivations, we conjecture that heterogeneity of effect sizes across studies and overestimation of statistical power can both be interpreted as stemming from adventitious error. We also show that adventitious error, if it occurs, has an impact on the uncertainty of composite measurement outcomes such as factor scores and summed scores. The results of a simulation study show that the impact on measurement uncertainty is rather small although larger for factor scores than for summed scores. Adventitious error is an assumption about the data generating mechanism; the notion offers a statistical framework for understanding a broad range of phenomena, including approximate fit, varying research findings, heterogeneity of effects, and overestimates of power.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adventitious error</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">covariance matrices</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">inferential uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">heterogeneity of effects</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">measurement uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DeKay, Michael L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pek, Jolynn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Psychometrika</subfield><subfield code="d">Springer US, 1936</subfield><subfield code="g">89(2024), 3 vom: 04. Juli, Seite 1055-1073</subfield><subfield code="w">(DE-627)487892054</subfield><subfield code="w">(DE-600)2188500-X</subfield><subfield code="x">1860-0980</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:3</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1055-1073</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11336-024-09980-7</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2574</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.03</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2024</subfield><subfield code="e">3</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">1055-1073</subfield></datafield></record></collection>
|
score |
7.399419 |