Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation
Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandst...
Ausführliche Beschreibung
Autor*in: |
Yin, Shuai [verfasserIn] Radwan, Ahmed E. [verfasserIn] Xiao, Feng [verfasserIn] Xie, Guochen [verfasserIn] Lai, Pengfei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
Natural fracture linear density |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: Geomechanics and geophysics for geo-energy and geo-resources - Springer International Publishing, 2015, 10(2024), 1 vom: 14. Okt. |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2024 ; number:1 ; day:14 ; month:10 |
Links: |
---|
DOI / URN: |
10.1007/s40948-024-00889-0 |
---|
Katalog-ID: |
SPR057768129 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR057768129 | ||
003 | DE-627 | ||
005 | 20241014064620.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241014s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40948-024-00889-0 |2 doi | |
035 | |a (DE-627)SPR057768129 | ||
035 | |a (SPR)s40948-024-00889-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
100 | 1 | |a Yin, Shuai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. | ||
650 | 4 | |a Natural fractures |7 (dpeaa)DE-He213 | |
650 | 4 | |a Low-permeability sandstone |7 (dpeaa)DE-He213 | |
650 | 4 | |a Natural fracture linear density |7 (dpeaa)DE-He213 | |
650 | 4 | |a Horizontal geostress difference |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hydraulic fractures |7 (dpeaa)DE-He213 | |
700 | 1 | |a Radwan, Ahmed E. |e verfasserin |4 aut | |
700 | 1 | |a Xiao, Feng |e verfasserin |4 aut | |
700 | 1 | |a Xie, Guochen |e verfasserin |4 aut | |
700 | 1 | |a Lai, Pengfei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geomechanics and geophysics for geo-energy and geo-resources |d Springer International Publishing, 2015 |g 10(2024), 1 vom: 14. Okt. |w (DE-627)827603401 |w (DE-600)2823606-3 |x 2363-8427 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2024 |g number:1 |g day:14 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40948-024-00889-0 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2024 |e 1 |b 14 |c 10 |
author_variant |
s y sy a e r ae aer f x fx g x gx p l pl |
---|---|
matchkey_str |
article:23638427:2024----::eeomnacaatrsisfetclauafatrilwemaiiyisnsoeadtifun |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1007/s40948-024-00889-0 doi (DE-627)SPR057768129 (SPR)s40948-024-00889-0-e DE-627 ger DE-627 rakwb eng 550 VZ Yin, Shuai verfasserin aut Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 Radwan, Ahmed E. verfasserin aut Xiao, Feng verfasserin aut Xie, Guochen verfasserin aut Lai, Pengfei verfasserin aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources Springer International Publishing, 2015 10(2024), 1 vom: 14. Okt. (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:10 year:2024 number:1 day:14 month:10 https://dx.doi.org/10.1007/s40948-024-00889-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1 14 10 |
spelling |
10.1007/s40948-024-00889-0 doi (DE-627)SPR057768129 (SPR)s40948-024-00889-0-e DE-627 ger DE-627 rakwb eng 550 VZ Yin, Shuai verfasserin aut Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 Radwan, Ahmed E. verfasserin aut Xiao, Feng verfasserin aut Xie, Guochen verfasserin aut Lai, Pengfei verfasserin aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources Springer International Publishing, 2015 10(2024), 1 vom: 14. Okt. (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:10 year:2024 number:1 day:14 month:10 https://dx.doi.org/10.1007/s40948-024-00889-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1 14 10 |
allfields_unstemmed |
10.1007/s40948-024-00889-0 doi (DE-627)SPR057768129 (SPR)s40948-024-00889-0-e DE-627 ger DE-627 rakwb eng 550 VZ Yin, Shuai verfasserin aut Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 Radwan, Ahmed E. verfasserin aut Xiao, Feng verfasserin aut Xie, Guochen verfasserin aut Lai, Pengfei verfasserin aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources Springer International Publishing, 2015 10(2024), 1 vom: 14. Okt. (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:10 year:2024 number:1 day:14 month:10 https://dx.doi.org/10.1007/s40948-024-00889-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1 14 10 |
allfieldsGer |
10.1007/s40948-024-00889-0 doi (DE-627)SPR057768129 (SPR)s40948-024-00889-0-e DE-627 ger DE-627 rakwb eng 550 VZ Yin, Shuai verfasserin aut Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 Radwan, Ahmed E. verfasserin aut Xiao, Feng verfasserin aut Xie, Guochen verfasserin aut Lai, Pengfei verfasserin aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources Springer International Publishing, 2015 10(2024), 1 vom: 14. Okt. (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:10 year:2024 number:1 day:14 month:10 https://dx.doi.org/10.1007/s40948-024-00889-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1 14 10 |
allfieldsSound |
10.1007/s40948-024-00889-0 doi (DE-627)SPR057768129 (SPR)s40948-024-00889-0-e DE-627 ger DE-627 rakwb eng 550 VZ Yin, Shuai verfasserin aut Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 Radwan, Ahmed E. verfasserin aut Xiao, Feng verfasserin aut Xie, Guochen verfasserin aut Lai, Pengfei verfasserin aut Enthalten in Geomechanics and geophysics for geo-energy and geo-resources Springer International Publishing, 2015 10(2024), 1 vom: 14. Okt. (DE-627)827603401 (DE-600)2823606-3 2363-8427 nnns volume:10 year:2024 number:1 day:14 month:10 https://dx.doi.org/10.1007/s40948-024-00889-0 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2024 1 14 10 |
language |
English |
source |
Enthalten in Geomechanics and geophysics for geo-energy and geo-resources 10(2024), 1 vom: 14. Okt. volume:10 year:2024 number:1 day:14 month:10 |
sourceStr |
Enthalten in Geomechanics and geophysics for geo-energy and geo-resources 10(2024), 1 vom: 14. Okt. volume:10 year:2024 number:1 day:14 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Natural fractures Low-permeability sandstone Natural fracture linear density Horizontal geostress difference Hydraulic fractures |
dewey-raw |
550 |
isfreeaccess_bool |
true |
container_title |
Geomechanics and geophysics for geo-energy and geo-resources |
authorswithroles_txt_mv |
Yin, Shuai @@aut@@ Radwan, Ahmed E. @@aut@@ Xiao, Feng @@aut@@ Xie, Guochen @@aut@@ Lai, Pengfei @@aut@@ |
publishDateDaySort_date |
2024-10-14T00:00:00Z |
hierarchy_top_id |
827603401 |
dewey-sort |
3550 |
id |
SPR057768129 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057768129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241014064620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241014s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40948-024-00889-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057768129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40948-024-00889-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-permeability sandstone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural fracture linear density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal geostress difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Radwan, Ahmed E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Guochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomechanics and geophysics for geo-energy and geo-resources</subfield><subfield code="d">Springer International Publishing, 2015</subfield><subfield code="g">10(2024), 1 vom: 14. Okt.</subfield><subfield code="w">(DE-627)827603401</subfield><subfield code="w">(DE-600)2823606-3</subfield><subfield code="x">2363-8427</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40948-024-00889-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Yin, Shuai |
spellingShingle |
Yin, Shuai ddc 550 misc Natural fractures misc Low-permeability sandstone misc Natural fracture linear density misc Horizontal geostress difference misc Hydraulic fractures Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
authorStr |
Yin, Shuai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)827603401 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2363-8427 |
topic_title |
550 VZ Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation Natural fractures (dpeaa)DE-He213 Low-permeability sandstone (dpeaa)DE-He213 Natural fracture linear density (dpeaa)DE-He213 Horizontal geostress difference (dpeaa)DE-He213 Hydraulic fractures (dpeaa)DE-He213 |
topic |
ddc 550 misc Natural fractures misc Low-permeability sandstone misc Natural fracture linear density misc Horizontal geostress difference misc Hydraulic fractures |
topic_unstemmed |
ddc 550 misc Natural fractures misc Low-permeability sandstone misc Natural fracture linear density misc Horizontal geostress difference misc Hydraulic fractures |
topic_browse |
ddc 550 misc Natural fractures misc Low-permeability sandstone misc Natural fracture linear density misc Horizontal geostress difference misc Hydraulic fractures |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geomechanics and geophysics for geo-energy and geo-resources |
hierarchy_parent_id |
827603401 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geomechanics and geophysics for geo-energy and geo-resources |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)827603401 (DE-600)2823606-3 |
title |
Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
ctrlnum |
(DE-627)SPR057768129 (SPR)s40948-024-00889-0-e |
title_full |
Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
author_sort |
Yin, Shuai |
journal |
Geomechanics and geophysics for geo-energy and geo-resources |
journalStr |
Geomechanics and geophysics for geo-energy and geo-resources |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Yin, Shuai Radwan, Ahmed E. Xiao, Feng Xie, Guochen Lai, Pengfei |
container_volume |
10 |
class |
550 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Yin, Shuai |
doi_str_mv |
10.1007/s40948-024-00889-0 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
title_auth |
Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
abstract |
Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. © The Author(s) 2024 |
abstractGer |
Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. © The Author(s) 2024 |
abstract_unstemmed |
Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation |
url |
https://dx.doi.org/10.1007/s40948-024-00889-0 |
remote_bool |
true |
author2 |
Radwan, Ahmed E. Xiao, Feng Xie, Guochen Lai, Pengfei |
author2Str |
Radwan, Ahmed E. Xiao, Feng Xie, Guochen Lai, Pengfei |
ppnlink |
827603401 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40948-024-00889-0 |
up_date |
2024-10-14T04:47:27.585Z |
_version_ |
1812863383071883264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR057768129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241014064620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241014s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40948-024-00889-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR057768129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40948-024-00889-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Shuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developmental characteristics of vertical natural fracture in low-permeability oil sandstones and its influence on hydraulic fracture propagation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Vertical natural fractures (NFs) are prevalent in low-permeability sandstone reservoirs. Presently, the impact of NFs on the extension of hydraulic fractures (HFs) remains partially unveiled, which restricts the scientific development of strategies for low-permeability, fractured oil sandstones. In this study, taking the oil sandstone of the He-3 Member, Hetaoyuan Formation, southeastern Biyang Depression as an example, we conducted a comprehensive investigation into the factors influencing vertical fracture development and the interaction between natural and hydraulic fractures. The cohesive unit simulations indicate that geostress is the principal factor influencing HF expansion, more so than NFs, with this influence intensifying as natural fracture density increases. As natural fracture density grows, the potential for two sets of conjugate natural fractures to form short HFs arises, which are limited in expansion scope, suggesting a need to reduce well spacing accordingly. Conversely, areas with a single set of NFs are more prone to developing longer HFs, warranting an increase in well spacing to avoid water channeling. High natural fracture densities may constrain the effectiveness of HFs. In fractured reservoirs with a 10 MPa horizontal stress difference, the length of HFs is 1.52 times that of HFs with 0 MPa and 5 MPa differences. However, the hydraulic fracture effectiveness index (FE) of the latter is 1.74 times higher than the former. For fractured reservoirs, the expansion capacity of HF length within a 5 MPa horizontal stress difference remains relatively stable; beyond this threshold, the expansion capacity increases with the growing horizontal stress difference, and the fracturing effect eventually deteriorates. Furthermore, as the strength of NFs escalates, the length and modified area of HFs initially decrease significantly before stabilizing. The complexity and FE value of HFs formed under strong natural fracture conditions are heightened, indicating a more effective fracturing outcome.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-permeability sandstone</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural fracture linear density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Horizontal geostress difference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Radwan, Ahmed E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Guochen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geomechanics and geophysics for geo-energy and geo-resources</subfield><subfield code="d">Springer International Publishing, 2015</subfield><subfield code="g">10(2024), 1 vom: 14. Okt.</subfield><subfield code="w">(DE-627)827603401</subfield><subfield code="w">(DE-600)2823606-3</subfield><subfield code="x">2363-8427</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40948-024-00889-0</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.400646 |