Precipitation nowcasting leveraging spatial correlation feature extraction and deep spatio-temporal fusion network

Abstract Precipitation nowcasting is crucial for various applications. However, existing deep learning models for meteorological applications face challenges regarding training efficiency, generalization of spatial features, and capturing long-range spatial dependencies. In particular, convolutional...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yu, Wenbin [verfasserIn]

Li, Yangsong [verfasserIn]

Fan, Cheng [verfasserIn]

Fu, Daoyong [verfasserIn]

Zhang, Chengjun [verfasserIn]

Chen, Yadang [verfasserIn]

Qian, Ming [verfasserIn]

Liu, Jie [verfasserIn]

Liu, Gaoping [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2024

Schlagwörter:

Precipitation nowcasting

Spatial correlation features

Spatial attention mechanism

Deep spatio-temporal fusion networks

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Earth science informatics - Springer Berlin Heidelberg, 2008, 17(2024), 5 vom: 23. Juli, Seite 4739-4755

Übergeordnetes Werk:

volume:17 ; year:2024 ; number:5 ; day:23 ; month:07 ; pages:4739-4755

Links:

Volltext

DOI / URN:

10.1007/s12145-024-01412-5

Katalog-ID:

SPR057819998

Nicht das Richtige dabei?

Schreiben Sie uns!