Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge
Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not n...
Ausführliche Beschreibung
Autor*in: |
Stern, Shay [verfasserIn] Dror, Tali [verfasserIn] Stolovicki, Elad [verfasserIn] Brenner, Naama [verfasserIn] Braun, Erez [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© EMBO and Nature Publishing Group 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular Systems Biology - Nature Publishing Group UK, 2023, 3(2007), 1 vom: 24. Apr. |
---|---|
Übergeordnetes Werk: |
volume:3 ; year:2007 ; number:1 ; day:24 ; month:04 |
Links: |
---|
DOI / URN: |
10.1038/msb4100147 |
---|
Katalog-ID: |
SPR058179194 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR058179194 | ||
003 | DE-627 | ||
005 | 20241030065019.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241030s2007 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1038/msb4100147 |2 doi | |
035 | |a (DE-627)SPR058179194 | ||
035 | |a (SPR)msb4100147-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Stern, Shay |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © EMBO and Nature Publishing Group 2007 | ||
520 | |a Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. | ||
520 | |a Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... | ||
520 | |a Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. | ||
650 | 4 | |a adaptation |7 (dpeaa)DE-He213 | |
650 | 4 | |a cellular metabolism |7 (dpeaa)DE-He213 | |
650 | 4 | |a expression arrays |7 (dpeaa)DE-He213 | |
650 | 4 | |a plasticity |7 (dpeaa)DE-He213 | |
650 | 4 | |a transcriptional response |7 (dpeaa)DE-He213 | |
700 | 1 | |a Dror, Tali |e verfasserin |4 aut | |
700 | 1 | |a Stolovicki, Elad |e verfasserin |4 aut | |
700 | 1 | |a Brenner, Naama |e verfasserin |4 aut | |
700 | 1 | |a Braun, Erez |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Molecular Systems Biology |d Nature Publishing Group UK, 2023 |g 3(2007), 1 vom: 24. Apr. |w (DE-627)490536905 |w (DE-600)2193510-5 |x 1744-4292 |7 nnns |
773 | 1 | 8 | |g volume:3 |g year:2007 |g number:1 |g day:24 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1038/msb4100147 |m X:SPRINGER |x Resolving-System |z lizenzpflichtig |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4116 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4155 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4598 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 3 |j 2007 |e 1 |b 24 |c 04 |
author_variant |
s s ss t d td e s es n b nb e b eb |
---|---|
matchkey_str |
article:17444292:2007----::eoeierncitoapatctudrisellrdp |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1038/msb4100147 doi (DE-627)SPR058179194 (SPR)msb4100147-e DE-627 ger DE-627 rakwb eng Stern, Shay verfasserin aut Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © EMBO and Nature Publishing Group 2007 Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 Dror, Tali verfasserin aut Stolovicki, Elad verfasserin aut Brenner, Naama verfasserin aut Braun, Erez verfasserin aut Enthalten in Molecular Systems Biology Nature Publishing Group UK, 2023 3(2007), 1 vom: 24. Apr. (DE-627)490536905 (DE-600)2193510-5 1744-4292 nnns volume:3 year:2007 number:1 day:24 month:04 https://dx.doi.org/10.1038/msb4100147 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 AR 3 2007 1 24 04 |
spelling |
10.1038/msb4100147 doi (DE-627)SPR058179194 (SPR)msb4100147-e DE-627 ger DE-627 rakwb eng Stern, Shay verfasserin aut Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © EMBO and Nature Publishing Group 2007 Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 Dror, Tali verfasserin aut Stolovicki, Elad verfasserin aut Brenner, Naama verfasserin aut Braun, Erez verfasserin aut Enthalten in Molecular Systems Biology Nature Publishing Group UK, 2023 3(2007), 1 vom: 24. Apr. (DE-627)490536905 (DE-600)2193510-5 1744-4292 nnns volume:3 year:2007 number:1 day:24 month:04 https://dx.doi.org/10.1038/msb4100147 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 AR 3 2007 1 24 04 |
allfields_unstemmed |
10.1038/msb4100147 doi (DE-627)SPR058179194 (SPR)msb4100147-e DE-627 ger DE-627 rakwb eng Stern, Shay verfasserin aut Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © EMBO and Nature Publishing Group 2007 Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 Dror, Tali verfasserin aut Stolovicki, Elad verfasserin aut Brenner, Naama verfasserin aut Braun, Erez verfasserin aut Enthalten in Molecular Systems Biology Nature Publishing Group UK, 2023 3(2007), 1 vom: 24. Apr. (DE-627)490536905 (DE-600)2193510-5 1744-4292 nnns volume:3 year:2007 number:1 day:24 month:04 https://dx.doi.org/10.1038/msb4100147 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 AR 3 2007 1 24 04 |
allfieldsGer |
10.1038/msb4100147 doi (DE-627)SPR058179194 (SPR)msb4100147-e DE-627 ger DE-627 rakwb eng Stern, Shay verfasserin aut Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © EMBO and Nature Publishing Group 2007 Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 Dror, Tali verfasserin aut Stolovicki, Elad verfasserin aut Brenner, Naama verfasserin aut Braun, Erez verfasserin aut Enthalten in Molecular Systems Biology Nature Publishing Group UK, 2023 3(2007), 1 vom: 24. Apr. (DE-627)490536905 (DE-600)2193510-5 1744-4292 nnns volume:3 year:2007 number:1 day:24 month:04 https://dx.doi.org/10.1038/msb4100147 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 AR 3 2007 1 24 04 |
allfieldsSound |
10.1038/msb4100147 doi (DE-627)SPR058179194 (SPR)msb4100147-e DE-627 ger DE-627 rakwb eng Stern, Shay verfasserin aut Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge 2007 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © EMBO and Nature Publishing Group 2007 Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 Dror, Tali verfasserin aut Stolovicki, Elad verfasserin aut Brenner, Naama verfasserin aut Braun, Erez verfasserin aut Enthalten in Molecular Systems Biology Nature Publishing Group UK, 2023 3(2007), 1 vom: 24. Apr. (DE-627)490536905 (DE-600)2193510-5 1744-4292 nnns volume:3 year:2007 number:1 day:24 month:04 https://dx.doi.org/10.1038/msb4100147 X:SPRINGER Resolving-System lizenzpflichtig Volltext SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 AR 3 2007 1 24 04 |
language |
English |
source |
Enthalten in Molecular Systems Biology 3(2007), 1 vom: 24. Apr. volume:3 year:2007 number:1 day:24 month:04 |
sourceStr |
Enthalten in Molecular Systems Biology 3(2007), 1 vom: 24. Apr. volume:3 year:2007 number:1 day:24 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
adaptation cellular metabolism expression arrays plasticity transcriptional response |
isfreeaccess_bool |
false |
container_title |
Molecular Systems Biology |
authorswithroles_txt_mv |
Stern, Shay @@aut@@ Dror, Tali @@aut@@ Stolovicki, Elad @@aut@@ Brenner, Naama @@aut@@ Braun, Erez @@aut@@ |
publishDateDaySort_date |
2007-04-24T00:00:00Z |
hierarchy_top_id |
490536905 |
id |
SPR058179194 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058179194</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241030065019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241030s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/msb4100147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058179194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)msb4100147-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stern, Shay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© EMBO and Nature Publishing Group 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular metabolism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expression arrays</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dror, Tali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stolovicki, Elad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brenner, Naama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Braun, Erez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular Systems Biology</subfield><subfield code="d">Nature Publishing Group UK, 2023</subfield><subfield code="g">3(2007), 1 vom: 24. Apr.</subfield><subfield code="w">(DE-627)490536905</subfield><subfield code="w">(DE-600)2193510-5</subfield><subfield code="x">1744-4292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1038/msb4100147</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Stern, Shay |
spellingShingle |
Stern, Shay misc adaptation misc cellular metabolism misc expression arrays misc plasticity misc transcriptional response Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
authorStr |
Stern, Shay |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)490536905 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1744-4292 |
topic_title |
Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge adaptation (dpeaa)DE-He213 cellular metabolism (dpeaa)DE-He213 expression arrays (dpeaa)DE-He213 plasticity (dpeaa)DE-He213 transcriptional response (dpeaa)DE-He213 |
topic |
misc adaptation misc cellular metabolism misc expression arrays misc plasticity misc transcriptional response |
topic_unstemmed |
misc adaptation misc cellular metabolism misc expression arrays misc plasticity misc transcriptional response |
topic_browse |
misc adaptation misc cellular metabolism misc expression arrays misc plasticity misc transcriptional response |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular Systems Biology |
hierarchy_parent_id |
490536905 |
hierarchy_top_title |
Molecular Systems Biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)490536905 (DE-600)2193510-5 |
title |
Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
ctrlnum |
(DE-627)SPR058179194 (SPR)msb4100147-e |
title_full |
Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
author_sort |
Stern, Shay |
journal |
Molecular Systems Biology |
journalStr |
Molecular Systems Biology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
author_browse |
Stern, Shay Dror, Tali Stolovicki, Elad Brenner, Naama Braun, Erez |
container_volume |
3 |
format_se |
Elektronische Aufsätze |
author-letter |
Stern, Shay |
doi_str_mv |
10.1038/msb4100147 |
author2-role |
verfasserin |
title_sort |
genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
title_auth |
Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
abstract |
Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. © EMBO and Nature Publishing Group 2007 |
abstractGer |
Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. © EMBO and Nature Publishing Group 2007 |
abstract_unstemmed |
Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges. Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the... Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state. © EMBO and Nature Publishing Group 2007 |
collection_details |
SYSFLAG_0 GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_636 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4116 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4311 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4317 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4393 GBV_ILN_4598 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge |
url |
https://dx.doi.org/10.1038/msb4100147 |
remote_bool |
true |
author2 |
Dror, Tali Stolovicki, Elad Brenner, Naama Braun, Erez |
author2Str |
Dror, Tali Stolovicki, Elad Brenner, Naama Braun, Erez |
ppnlink |
490536905 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1038/msb4100147 |
up_date |
2024-10-30T14:10:38.972Z |
_version_ |
1814348367369601024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058179194</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241030065019.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241030s2007 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/msb4100147</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058179194</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)msb4100147-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stern, Shay</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© EMBO and Nature Publishing Group 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. An open question is to what extent transcriptional response to perturbations has been specifically selected along evolution. To test the possibility that transcriptional reprogramming does not need to be ‘pre‐designed’ to lead to an adaptive metabolic state on physiological timescales, we confronted yeast cells with a novel challenge they had not previously encountered. We rewired the genome by recruiting an essential gene, HIS3, from the histidine biosynthesis pathway to a foreign regulatory system, the GAL network responsible for galactose utilization. Switching medium to glucose in a chemostat caused repression of the essential gene and presented the cells with a severe challenge to which they adapted over approximately 10 generations. Using genome‐wide expression arrays, we show here that a global transcriptional reprogramming (>1200 genes) underlies the adaptation. A large fraction of the responding genes is nonreproducible in repeated experiments. These results show that a nonspecific transcriptional response reflecting the natural plasticity of the regulatory network supports adaptation of cells to novel challenges.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synopsis Cells adjust their transcriptional state to accommodate environmental and genetic perturbations. Some common perturbations, such as changes in nutrient composition, elicit well‐characterized transcriptional responses that can be understood by simple engineering‐like design principles as satisfying specific demands imposed by the perturbation. However, cells also have the ability to adapt to novel and unforeseen challenges. This ability is central in realizing the evolvability potential of cells as they respond to dramatic genetic or environmental changes along evolution. Little is known about the mechanisms underlying such adaptations to novel challenges; in particular, the role of the transcriptional regulatory network in such adaptations has not been characterized. Genome‐wide measurements have revealed that, in many cases, perturbations lead to a global transcriptional response involving a sizeable fraction of the genome (Gasch et al, 2000; Jelinsky et al, 2000; Causton et al, 2001; Ideker et al, 2001; Lai et al, 2005). Such global behavior suggests that general collective properties of the genetic network, rather than specific pre‐designed pathways, determine an important part of the transcriptional response. It is not known however what fraction of genes within such massive transcriptional responses is essential to the specific cellular demands. It is also unknown whether the non‐pre‐designed part of the response can have a functional role in adaptation to novel challenges. To study these questions, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution. A strain of the yeast Saccharomyces cerevisiae was engineered to recruit the gene HIS3, an essential enzyme from the histidine biosynthesis pathway (Hinnebusch, 1992), to the GAL regulatory system, responsible for galactose utilization (Stolovicki et al, 2006). The GAL system is known to be strongly repressed when the cells are exposed to glucose. Therefore, upon switching to a medium containing glucose and lacking histidine, the GAL system and with it HIS3 are highly repressed immediately following the switch and the cells encounter a severe challenge. We have recently shown that a cell population carrying this rewired genome can adapt to grow competitively in a chemostat in a medium containing pure glucose (Stolovicki et al, 2006). This adaptation occurred on a timescale of ∼10 generations; applying a stronger environmental pressure in the form of a competitive inhibitor to HIS3 (3AT) resulted in a similar adaptation albeit with a longer timescale. Figure 1 shows the dynamics of the population's cell density (blue lines, measured by OD) following a medium switch from galactose to glucose in the chemostat without (A) and with (B) 3AT. The experiments revealed that adaptation occurs on physiological timescales (much shorter than required by spontaneous random mutations), but the mechanisms underlying this adaptation have remained unclear (Stolovicki et al, 2006). Yeast cells had not encountered recruitment of HIS3 to the GAL system along their evolutionary history, and their genome could not possibly have been selected to specifically address glucose repression of HIS3. This experiment, therefore, provides a unique opportunity to characterize the spontaneous transcriptional response during adaptation to a novel challenge and to assess the functional role of the regulatory system in this adaptation. We used DNA microarrays to measure the genome‐wide expression levels at time points along the adaptation process, with and without 3AT. These measurements revealed that a sizeable fraction of the genome responded by induction or repression to the switch into glucose. Superimposed on the OD traces, Figure 1 shows the results of a clustering analysis of the expression of genes as measured by the arrays along time in the experiments. This analysis revealed two dominant clusters, each containing hundreds of genes in each experiment, which responded to the medium switch to glucose by a strong transient induction or repression followed by relaxation to steady state on the timescale of the adaptation process, ∼ 10 generations. The two clusters in each experiment show similar but opposite dynamics. A detailed analysis of the gene content in the two clusters revealed that only a small portion of the response was induced by a change in carbon source (15% overlap between the corresponding clusters in the two experiments, with and without 3AT). Moreover, it revealed a very low overlap with the universal stress response observed for a wide range of environmental stresses (Gasch et al, 2000; Causton et al, 2001) and with the typical response to amino‐acid starvation (Natarajan et al, 2001). Additionally, all known specific responses to stress in the literature are characterized by transient induction or repression with relaxation to steady state within a generation time (Gasch et al, 2000; Koerkamp et al, 2002; Wu et al, 2004), whereas in our experiments relaxation of the transcriptional response occurs over many generations. Taken together, these results show that the transcriptional response observed here is neither a metabolic response to the change in carbon source nor is it a standard response to stress or amino‐acid starvation. This raises the possibility that it is a spontaneous collective response that is largely composed of genes that do not have a specific function. This possibility was tested directly by repeating the experiment with different populations and comparing their responses. This procedure revealed reproducible adaptation dynamics and steady states in terms of population density, but showed significantly different transcriptional transient responses and steady states for the two repeated experiments. Thus, a significant portion of the genes that changed their expression during the adaptation process do not have a well‐defined and reproducible function in the challenging environment. The application of a stronger environmental pressure in the form of 3AT had a dramatic effect on the global characteristics of the transcriptional response: it induced a markedly higher correlation among the hundreds of responding genes. Figure 3A compares the array data in color code for the two experiments. It is seen that the emergent pattern of transcription exhibits a higher degree of order by the introduction of high external pressure. Observation of the transcriptional patterns for specific metabolic pathways illustrates the different contributions to the correlated dynamics (Figure 3B–D). A general energetic module such as glycolysis exhibited similar patterns of induction and relaxation in experiments with and without 3AT (Figure 3B). However, in general, we found that more than one‐third of the known metabolic modules (30 out of 88 modules described in KEGG) exhibited high expression correlation among their genes when the environmental pressure was high but not when it was low. As an example, Figure 3C shows the histidine biosynthesis pathway and Figure 3D the purine pathway. Note the highly ordered trajectories in the lower panels (with 3AT) compared to the disordered ones in the upper panels (no 3AT). This order extends also between genes belonging to different and even distant metabolic modules. It indicates that a global transcriptional regulatory mechanism is in operation, rather than a local specific one. Surprisingly, genes belonging to the same metabolic pathway exhibited simultaneous positively and negatively correlated dynamics. Thus, an important conclusion of this work is that the global transcriptional response to a novel challenge cannot be explained by a simple cellular or metabolic logic. This is to be expected if the response had not been specifically selected in evolution and was not pre‐designed for the challenge. Our data clearly reveal that the massive transcriptional response underlies the adaptation process to a novel challenge. The novelty of the challenge presented to the cells excludes the possibility that this response has been specifically selected toward this challenge. Thus, transcriptional regulation has dynamic properties resulting in a general massive nonspecific response to a novel perturbation. Such a response in turn allows for metabolic rearrangements, which by feeding back on transcription lead to adaptation of the cells to the unforeseen situation. The drastic change in the expression state of the cell opens multiple new metabolic pathways. Physiological selection works then on these multiple metabolic pathways to stabilize an adaptive state that causes relaxation of the perturbed expression pattern. This scenario, involving the creation of a library of possibilities and physiological selection over this library, is compatible with our understanding of a broad class of biological systems, placing the cellular metabolic/regulatory networks on the same footing as the neural or the...</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By recruiting the essential HIS3 gene to the GAL regulatory system and switching to a repressing glucose medium, we confronted yeast cells with a novel challenge they had not encountered before along their history in evolution.Adaptation to this challenge involved a global transcriptional response of a sizeable fraction of the genome, which relaxed on the time scale of the population adaptation, of order of 10 generations.For a large fraction of the responding genes there is no simple biological interpretation, connecting them to the specific cellular demands imposed by the novel challenge.Strikingly, repeating the experiment did not reproduce similar transcription patterns neither in the transient phase nor in the adapted state in glucose.These results suggest that physiological selection operates on the new metabolic configurations generated by the non‐specific large scale transcriptional response to eventually stabilize an adaptive state.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cellular metabolism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expression arrays</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasticity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transcriptional response</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dror, Tali</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stolovicki, Elad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brenner, Naama</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Braun, Erez</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular Systems Biology</subfield><subfield code="d">Nature Publishing Group UK, 2023</subfield><subfield code="g">3(2007), 1 vom: 24. Apr.</subfield><subfield code="w">(DE-627)490536905</subfield><subfield code="w">(DE-600)2193510-5</subfield><subfield code="x">1744-4292</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:3</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:1</subfield><subfield code="g">day:24</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1038/msb4100147</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4598</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">3</subfield><subfield code="j">2007</subfield><subfield code="e">1</subfield><subfield code="b">24</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.399081 |