Assessing the reliability of medical resource demand models in the context of COVID-19
Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However,...
Ausführliche Beschreibung
Autor*in: |
Dautel, Kimberly [verfasserIn] Agyingi, Ephraim [verfasserIn] Pathmanathan, Pras [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical informatics and decision making - BioMed Central, 2001, 24(2024), 1 vom: 31. Okt. |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2024 ; number:1 ; day:31 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s12911-024-02726-6 |
---|
Katalog-ID: |
SPR058230378 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR058230378 | ||
003 | DE-627 | ||
005 | 20241101064856.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241101s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12911-024-02726-6 |2 doi | |
035 | |a (DE-627)SPR058230378 | ||
035 | |a (SPR)s12911-024-02726-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.32 |2 bkl | ||
100 | 1 | |a Dautel, Kimberly |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the reliability of medical resource demand models in the context of COVID-19 |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 | ||
520 | |a Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. | ||
650 | 4 | |a Mathematical modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Epidemiology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Medical device |7 (dpeaa)DE-He213 | |
650 | 4 | |a Validation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Agyingi, Ephraim |e verfasserin |4 aut | |
700 | 1 | |a Pathmanathan, Pras |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical informatics and decision making |d BioMed Central, 2001 |g 24(2024), 1 vom: 31. Okt. |w (DE-627)328977306 |w (DE-600)2046490-3 |x 1472-6947 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2024 |g number:1 |g day:31 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12911-024-02726-6 |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4029 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4155 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 44.32 |q VZ |
951 | |a AR | ||
952 | |d 24 |j 2024 |e 1 |b 31 |c 10 |
author_variant |
k d kd e a ea p p pp |
---|---|
matchkey_str |
article:14726947:2024----::sesnteeibltomdcleoreeadoesn |
hierarchy_sort_str |
2024 |
bklnumber |
44.32 |
publishDate |
2024 |
allfields |
10.1186/s12911-024-02726-6 doi (DE-627)SPR058230378 (SPR)s12911-024-02726-6-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Dautel, Kimberly verfasserin aut Assessing the reliability of medical resource demand models in the context of COVID-19 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 Agyingi, Ephraim verfasserin aut Pathmanathan, Pras verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 31. Okt. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:31 month:10 https://dx.doi.org/10.1186/s12911-024-02726-6 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 31 10 |
spelling |
10.1186/s12911-024-02726-6 doi (DE-627)SPR058230378 (SPR)s12911-024-02726-6-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Dautel, Kimberly verfasserin aut Assessing the reliability of medical resource demand models in the context of COVID-19 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 Agyingi, Ephraim verfasserin aut Pathmanathan, Pras verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 31. Okt. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:31 month:10 https://dx.doi.org/10.1186/s12911-024-02726-6 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 31 10 |
allfields_unstemmed |
10.1186/s12911-024-02726-6 doi (DE-627)SPR058230378 (SPR)s12911-024-02726-6-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Dautel, Kimberly verfasserin aut Assessing the reliability of medical resource demand models in the context of COVID-19 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 Agyingi, Ephraim verfasserin aut Pathmanathan, Pras verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 31. Okt. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:31 month:10 https://dx.doi.org/10.1186/s12911-024-02726-6 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 31 10 |
allfieldsGer |
10.1186/s12911-024-02726-6 doi (DE-627)SPR058230378 (SPR)s12911-024-02726-6-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Dautel, Kimberly verfasserin aut Assessing the reliability of medical resource demand models in the context of COVID-19 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 Agyingi, Ephraim verfasserin aut Pathmanathan, Pras verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 31. Okt. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:31 month:10 https://dx.doi.org/10.1186/s12911-024-02726-6 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 31 10 |
allfieldsSound |
10.1186/s12911-024-02726-6 doi (DE-627)SPR058230378 (SPR)s12911-024-02726-6-e DE-627 ger DE-627 rakwb eng 610 VZ 44.32 bkl Dautel, Kimberly verfasserin aut Assessing the reliability of medical resource demand models in the context of COVID-19 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 Agyingi, Ephraim verfasserin aut Pathmanathan, Pras verfasserin aut Enthalten in BMC medical informatics and decision making BioMed Central, 2001 24(2024), 1 vom: 31. Okt. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:24 year:2024 number:1 day:31 month:10 https://dx.doi.org/10.1186/s12911-024-02726-6 X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 44.32 VZ AR 24 2024 1 31 10 |
language |
English |
source |
Enthalten in BMC medical informatics and decision making 24(2024), 1 vom: 31. Okt. volume:24 year:2024 number:1 day:31 month:10 |
sourceStr |
Enthalten in BMC medical informatics and decision making 24(2024), 1 vom: 31. Okt. volume:24 year:2024 number:1 day:31 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mathematical modeling Epidemiology Medical device Validation |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
BMC medical informatics and decision making |
authorswithroles_txt_mv |
Dautel, Kimberly @@aut@@ Agyingi, Ephraim @@aut@@ Pathmanathan, Pras @@aut@@ |
publishDateDaySort_date |
2024-10-31T00:00:00Z |
hierarchy_top_id |
328977306 |
dewey-sort |
3610 |
id |
SPR058230378 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058230378</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241101064856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241101s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-024-02726-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058230378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-024-02726-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dautel, Kimberly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the reliability of medical resource demand models in the context of COVID-19</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical device</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agyingi, Ephraim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pathmanathan, Pras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 31. Okt.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-024-02726-6</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Dautel, Kimberly |
spellingShingle |
Dautel, Kimberly ddc 610 bkl 44.32 misc Mathematical modeling misc Epidemiology misc Medical device misc Validation Assessing the reliability of medical resource demand models in the context of COVID-19 |
authorStr |
Dautel, Kimberly |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328977306 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1472-6947 |
topic_title |
610 VZ 44.32 bkl Assessing the reliability of medical resource demand models in the context of COVID-19 Mathematical modeling (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Medical device (dpeaa)DE-He213 Validation (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.32 misc Mathematical modeling misc Epidemiology misc Medical device misc Validation |
topic_unstemmed |
ddc 610 bkl 44.32 misc Mathematical modeling misc Epidemiology misc Medical device misc Validation |
topic_browse |
ddc 610 bkl 44.32 misc Mathematical modeling misc Epidemiology misc Medical device misc Validation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical informatics and decision making |
hierarchy_parent_id |
328977306 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
BMC medical informatics and decision making |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328977306 (DE-600)2046490-3 |
title |
Assessing the reliability of medical resource demand models in the context of COVID-19 |
ctrlnum |
(DE-627)SPR058230378 (SPR)s12911-024-02726-6-e |
title_full |
Assessing the reliability of medical resource demand models in the context of COVID-19 |
author_sort |
Dautel, Kimberly |
journal |
BMC medical informatics and decision making |
journalStr |
BMC medical informatics and decision making |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Dautel, Kimberly Agyingi, Ephraim Pathmanathan, Pras |
container_volume |
24 |
class |
610 VZ 44.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dautel, Kimberly |
doi_str_mv |
10.1186/s12911-024-02726-6 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
assessing the reliability of medical resource demand models in the context of covid-19 |
title_auth |
Assessing the reliability of medical resource demand models in the context of COVID-19 |
abstract |
Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 |
abstractGer |
Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 |
abstract_unstemmed |
Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA SSG-OPC-MAT GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4029 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4155 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4318 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Assessing the reliability of medical resource demand models in the context of COVID-19 |
url |
https://dx.doi.org/10.1186/s12911-024-02726-6 |
remote_bool |
true |
author2 |
Agyingi, Ephraim Pathmanathan, Pras |
author2Str |
Agyingi, Ephraim Pathmanathan, Pras |
ppnlink |
328977306 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12911-024-02726-6 |
up_date |
2024-11-01T06:37:05.704Z |
_version_ |
1814501026127937536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058230378</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241101064856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241101s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-024-02726-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058230378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-024-02726-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dautel, Kimberly</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the reliability of medical resource demand models in the context of COVID-19</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Numerous medical resource demand models have been created as tools for governments or hospitals, aiming to predict the need for crucial resources like ventilators, hospital beds, personal protective equipment (PPE), and diagnostic kits during crises such as the COVID-19 pandemic. However, the reliability of these demand models remains uncertain. Methods Demand models typically consist of two main components: hospital use epidemiological models that predict hospitalizations or daily admissions, and a demand calculator that translates the outputs of the epidemiological model into predictions for resource usage. We conducted separate analyses to evaluate each of these components. In the first analysis, we validated various hospital use epidemiological models using a recent validation framework designed for epidemiological models. This allowed us to quantify the accuracy of the models in predicting critical aspects such as the date and magnitude of local COVID-19 peaks, among other factors. In the second analysis, we evaluated a range of demand calculators for ventilators, medical gowns, and COVID-19 test kits. To achieve this, we decoupled these demand calculators from the underlying epidemiological models and provided ground truth data for their inputs. This approach enabled a direct comparison of the demand calculators, comparing them against each other and actual usage data when available. The code is available at https://doi.org/10.5281/zenodo.13712387. Results Performance varied greatly across the epidemiological models, with greater variability in COVID-19 hospital use predictions than for COVID-19 deaths as analyzed previously. Some models did not have any peaks. Among those that did, the models under-estimated date of peak approximately as often as they over-estimated, but were more likely to under-estimate magnitude of peak, with typical relative errors around 50%. Regarding demand calculator predictions, there was significant variability, including five-fold differences in predictions for gown models. Validation against actual or surrogate usage data illustrated the potential value of demand models while demonstrating their limitations. Conclusions The emerging field of demand modeling holds promise in averting medical resource shortages during future public health emergencies. However, achieving this potential necessitates focused efforts on standardization, transparency, and rigorous model validation before placing reliance on demand models in critical public health decision-making.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical device</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agyingi, Ephraim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pathmanathan, Pras</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">BioMed Central, 2001</subfield><subfield code="g">24(2024), 1 vom: 31. Okt.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-024-02726-6</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4029</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4155</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.32</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.3985195 |