Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study
Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM)...
Ausführliche Beschreibung
Autor*in: |
Cao, Changchun [verfasserIn] Han, Yong [verfasserIn] Deng, Huanhua [verfasserIn] Zhang, Xiaohua [verfasserIn] Hu, Haofei [verfasserIn] Zha, Fubing [verfasserIn] Wang, Yulong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2024 |
---|
Übergeordnetes Werk: |
Enthalten in: European journal of medical research - BioMed Central, 2000, 29(2024), 1 vom: 05. Nov. |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2024 ; number:1 ; day:05 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s40001-024-02121-x |
---|
Katalog-ID: |
SPR058266925 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR058266925 | ||
003 | DE-627 | ||
005 | 20241105064751.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241105s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40001-024-02121-x |2 doi | |
035 | |a (DE-627)SPR058266925 | ||
035 | |a (SPR)s40001-024-02121-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
100 | 1 | |a Cao, Changchun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2024 | ||
520 | |a Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. | ||
650 | 4 | |a Triglyceride–glucose index |7 (dpeaa)DE-He213 | |
650 | 4 | |a Triglyceride |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fasting plasma glucose |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prediabetes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-linearity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Han, Yong |e verfasserin |4 aut | |
700 | 1 | |a Deng, Huanhua |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xiaohua |e verfasserin |4 aut | |
700 | 1 | |a Hu, Haofei |e verfasserin |4 aut | |
700 | 1 | |a Zha, Fubing |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yulong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European journal of medical research |d BioMed Central, 2000 |g 29(2024), 1 vom: 05. Nov. |w (DE-627)375977775 |w (DE-600)2129989-4 |x 2047-783X |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2024 |g number:1 |g day:05 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40001-024-02121-x |m X:SPRINGER |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a SYSFLAG_0 | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 29 |j 2024 |e 1 |b 05 |c 11 |
author_variant |
c c cc y h yh h d hd x z xz h h hh f z fz y w yw |
---|---|
matchkey_str |
article:2047783X:2024----::olnacnetobtenhtilcrdguoeneadrdaeersaoghnsauta |
hierarchy_sort_str |
2024 |
publishDate |
2024 |
allfields |
10.1186/s40001-024-02121-x doi (DE-627)SPR058266925 (SPR)s40001-024-02121-x-e DE-627 ger DE-627 rakwb eng 610 VZ Cao, Changchun verfasserin aut Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 Han, Yong verfasserin aut Deng, Huanhua verfasserin aut Zhang, Xiaohua verfasserin aut Hu, Haofei verfasserin aut Zha, Fubing verfasserin aut Wang, Yulong verfasserin aut Enthalten in European journal of medical research BioMed Central, 2000 29(2024), 1 vom: 05. Nov. (DE-627)375977775 (DE-600)2129989-4 2047-783X nnns volume:29 year:2024 number:1 day:05 month:11 https://dx.doi.org/10.1186/s40001-024-02121-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 05 11 |
spelling |
10.1186/s40001-024-02121-x doi (DE-627)SPR058266925 (SPR)s40001-024-02121-x-e DE-627 ger DE-627 rakwb eng 610 VZ Cao, Changchun verfasserin aut Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 Han, Yong verfasserin aut Deng, Huanhua verfasserin aut Zhang, Xiaohua verfasserin aut Hu, Haofei verfasserin aut Zha, Fubing verfasserin aut Wang, Yulong verfasserin aut Enthalten in European journal of medical research BioMed Central, 2000 29(2024), 1 vom: 05. Nov. (DE-627)375977775 (DE-600)2129989-4 2047-783X nnns volume:29 year:2024 number:1 day:05 month:11 https://dx.doi.org/10.1186/s40001-024-02121-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 05 11 |
allfields_unstemmed |
10.1186/s40001-024-02121-x doi (DE-627)SPR058266925 (SPR)s40001-024-02121-x-e DE-627 ger DE-627 rakwb eng 610 VZ Cao, Changchun verfasserin aut Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 Han, Yong verfasserin aut Deng, Huanhua verfasserin aut Zhang, Xiaohua verfasserin aut Hu, Haofei verfasserin aut Zha, Fubing verfasserin aut Wang, Yulong verfasserin aut Enthalten in European journal of medical research BioMed Central, 2000 29(2024), 1 vom: 05. Nov. (DE-627)375977775 (DE-600)2129989-4 2047-783X nnns volume:29 year:2024 number:1 day:05 month:11 https://dx.doi.org/10.1186/s40001-024-02121-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 05 11 |
allfieldsGer |
10.1186/s40001-024-02121-x doi (DE-627)SPR058266925 (SPR)s40001-024-02121-x-e DE-627 ger DE-627 rakwb eng 610 VZ Cao, Changchun verfasserin aut Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 Han, Yong verfasserin aut Deng, Huanhua verfasserin aut Zhang, Xiaohua verfasserin aut Hu, Haofei verfasserin aut Zha, Fubing verfasserin aut Wang, Yulong verfasserin aut Enthalten in European journal of medical research BioMed Central, 2000 29(2024), 1 vom: 05. Nov. (DE-627)375977775 (DE-600)2129989-4 2047-783X nnns volume:29 year:2024 number:1 day:05 month:11 https://dx.doi.org/10.1186/s40001-024-02121-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 05 11 |
allfieldsSound |
10.1186/s40001-024-02121-x doi (DE-627)SPR058266925 (SPR)s40001-024-02121-x-e DE-627 ger DE-627 rakwb eng 610 VZ Cao, Changchun verfasserin aut Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2024 Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 Han, Yong verfasserin aut Deng, Huanhua verfasserin aut Zhang, Xiaohua verfasserin aut Hu, Haofei verfasserin aut Zha, Fubing verfasserin aut Wang, Yulong verfasserin aut Enthalten in European journal of medical research BioMed Central, 2000 29(2024), 1 vom: 05. Nov. (DE-627)375977775 (DE-600)2129989-4 2047-783X nnns volume:29 year:2024 number:1 day:05 month:11 https://dx.doi.org/10.1186/s40001-024-02121-x X:SPRINGER Resolving-System kostenfrei Volltext SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 29 2024 1 05 11 |
language |
English |
source |
Enthalten in European journal of medical research 29(2024), 1 vom: 05. Nov. volume:29 year:2024 number:1 day:05 month:11 |
sourceStr |
Enthalten in European journal of medical research 29(2024), 1 vom: 05. Nov. volume:29 year:2024 number:1 day:05 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Triglyceride–glucose index Triglyceride Fasting plasma glucose Prediabetes Non-linearity |
dewey-raw |
610 |
isfreeaccess_bool |
true |
container_title |
European journal of medical research |
authorswithroles_txt_mv |
Cao, Changchun @@aut@@ Han, Yong @@aut@@ Deng, Huanhua @@aut@@ Zhang, Xiaohua @@aut@@ Hu, Haofei @@aut@@ Zha, Fubing @@aut@@ Wang, Yulong @@aut@@ |
publishDateDaySort_date |
2024-11-05T00:00:00Z |
hierarchy_top_id |
375977775 |
dewey-sort |
3610 |
id |
SPR058266925 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058266925</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241105064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241105s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40001-024-02121-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058266925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40001-024-02121-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Changchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triglyceride–glucose index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triglyceride</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fasting plasma glucose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediabetes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linearity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Huanhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Haofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zha, Fubing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yulong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of medical research</subfield><subfield code="d">BioMed Central, 2000</subfield><subfield code="g">29(2024), 1 vom: 05. Nov.</subfield><subfield code="w">(DE-627)375977775</subfield><subfield code="w">(DE-600)2129989-4</subfield><subfield code="x">2047-783X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40001-024-02121-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Cao, Changchun |
spellingShingle |
Cao, Changchun ddc 610 misc Triglyceride–glucose index misc Triglyceride misc Fasting plasma glucose misc Prediabetes misc Non-linearity Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
authorStr |
Cao, Changchun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)375977775 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2047-783X |
topic_title |
610 VZ Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study Triglyceride–glucose index (dpeaa)DE-He213 Triglyceride (dpeaa)DE-He213 Fasting plasma glucose (dpeaa)DE-He213 Prediabetes (dpeaa)DE-He213 Non-linearity (dpeaa)DE-He213 |
topic |
ddc 610 misc Triglyceride–glucose index misc Triglyceride misc Fasting plasma glucose misc Prediabetes misc Non-linearity |
topic_unstemmed |
ddc 610 misc Triglyceride–glucose index misc Triglyceride misc Fasting plasma glucose misc Prediabetes misc Non-linearity |
topic_browse |
ddc 610 misc Triglyceride–glucose index misc Triglyceride misc Fasting plasma glucose misc Prediabetes misc Non-linearity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European journal of medical research |
hierarchy_parent_id |
375977775 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
European journal of medical research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)375977775 (DE-600)2129989-4 |
title |
Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
ctrlnum |
(DE-627)SPR058266925 (SPR)s40001-024-02121-x-e |
title_full |
Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
author_sort |
Cao, Changchun |
journal |
European journal of medical research |
journalStr |
European journal of medical research |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
author_browse |
Cao, Changchun Han, Yong Deng, Huanhua Zhang, Xiaohua Hu, Haofei Zha, Fubing Wang, Yulong |
container_volume |
29 |
class |
610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Cao, Changchun |
doi_str_mv |
10.1186/s40001-024-02121-x |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
non-linear connection between the triglyceride–glucose index and prediabetes risk among chinese adults: a secondary retrospective cohort study |
title_auth |
Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
abstract |
Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. © The Author(s) 2024 |
abstractGer |
Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. © The Author(s) 2024 |
abstract_unstemmed |
Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice. © The Author(s) 2024 |
collection_details |
SYSFLAG_0 GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_72 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study |
url |
https://dx.doi.org/10.1186/s40001-024-02121-x |
remote_bool |
true |
author2 |
Han, Yong Deng, Huanhua Zhang, Xiaohua Hu, Haofei Zha, Fubing Wang, Yulong |
author2Str |
Han, Yong Deng, Huanhua Zhang, Xiaohua Hu, Haofei Zha, Fubing Wang, Yulong |
ppnlink |
375977775 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40001-024-02121-x |
up_date |
2024-11-05T06:30:05.610Z |
_version_ |
1814862973486759936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR058266925</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20241105064751.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241105s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40001-024-02121-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR058266925</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40001-024-02121-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cao, Changchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-linear connection between the triglyceride–glucose index and prediabetes risk among Chinese adults: a secondary retrospective cohort study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2024</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The triglyceride–glucose (TyG) index has garnered recognition as a surrogate marker for insulin resistance, a pivotal factor in the pathogenesis of various metabolic disorders. Despite its emerging role, the empirical evidence delineating its association with prediabetes mellitus (Pre-DM) remains scant. This research aims to clarify the link between the TyG index and the likelihood of Pre-DM development within a Chinese demographic. Methods This investigation was structured as a retrospective cohort analysis, encompassing a sample of 179,177 Chinese adults. These individuals underwent medical examinations at the Rich Healthcare Group over a period spanning from 2010 to 2016. To ascertain the relationship between the TyG index and the incidence of Pre-DM, this study employed Cox regression analysis complemented by sensitivity and subgroup assessments. Furthermore, Cox proportional hazards regression with cubic spline functions and smooth curve fitting was incorporated to explore the existence of any non-linear connection within this association. Results Upon adjusting for a comprehensive array of confounding variables, a statistically significant positive correlation between the TyG index and the risk of Pre-DM was identified (HR: 1.60, 95%CI 1.56–1.65, P < 0.001). The analysis illuminated a non-linear relationship, with an inflection point at a TyG index value of 8.78. For TyG index values below and above this inflection point, the HR was calculated to be 1.94 (95%CI 1.86–2.03) and 1.26 (95%CI 1.20–1.33), respectively. Sensitivity analyses further fortified the reliability of these findings. Conclusions This comprehensive examination delineated a significantly positive, non-linear correlation between the TyG index and the risk of Pre-DM within a Chinese population. Individuals with TyG index values below 8.78 have a significantly increased risk of developing prediabetes. These findings underscore the TyG index’s potential efficacy as a predictive tool for assessing Pre-DM risk in clinical practice.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triglyceride–glucose index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triglyceride</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fasting plasma glucose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediabetes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-linearity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Yong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Huanhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaohua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Haofei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zha, Fubing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yulong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of medical research</subfield><subfield code="d">BioMed Central, 2000</subfield><subfield code="g">29(2024), 1 vom: 05. Nov.</subfield><subfield code="w">(DE-627)375977775</subfield><subfield code="w">(DE-600)2129989-4</subfield><subfield code="x">2047-783X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2024</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40001-024-02121-x</subfield><subfield code="m">X:SPRINGER</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_0</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2024</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401784 |