Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of G...
Ausführliche Beschreibung
Autor*in: |
Jieli Kou [verfasserIn] Xiaofei Gu [verfasserIn] Liqing Kang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
In: Computational and Mathematical Methods in Medicine - Hindawi Limited, 2011, (2022) |
---|---|
Übergeordnetes Werk: |
year:2022 |
Links: |
---|
DOI / URN: |
10.1155/2022/7267036 |
---|
Katalog-ID: |
DOAJ02847662X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ02847662X | ||
003 | DE-627 | ||
005 | 20230226165603.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230226s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1155/2022/7267036 |2 doi | |
035 | |a (DE-627)DOAJ02847662X | ||
035 | |a (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a R858-859.7 | |
100 | 0 | |a Jieli Kou |e verfasserin |4 aut | |
245 | 1 | 0 | |a Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. | ||
653 | 0 | |a Computer applications to medicine. Medical informatics | |
700 | 0 | |a Xiaofei Gu |e verfasserin |4 aut | |
700 | 0 | |a Liqing Kang |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Computational and Mathematical Methods in Medicine |d Hindawi Limited, 2011 |g (2022) |w (DE-627)519764781 |w (DE-600)2256917-0 |x 1748670X |7 nnns |
773 | 1 | 8 | |g year:2022 |
856 | 4 | 0 | |u https://doi.org/10.1155/2022/7267036 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 |z kostenfrei |
856 | 4 | 0 | |u http://dx.doi.org/10.1155/2022/7267036 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1748-6718 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |j 2022 |
author_variant |
j k jk x g xg l k lk |
---|---|
matchkey_str |
article:1748670X:2022----::orltoaayiocmuetmgahfaueadahlgclyeomlioagon |
hierarchy_sort_str |
2022 |
callnumber-subject-code |
R |
publishDate |
2022 |
allfields |
10.1155/2022/7267036 doi (DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 DE-627 ger DE-627 rakwb eng R858-859.7 Jieli Kou verfasserin aut Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Computer applications to medicine. Medical informatics Xiaofei Gu verfasserin aut Liqing Kang verfasserin aut In Computational and Mathematical Methods in Medicine Hindawi Limited, 2011 (2022) (DE-627)519764781 (DE-600)2256917-0 1748670X nnns year:2022 https://doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 kostenfrei http://dx.doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/toc/1748-6718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
spelling |
10.1155/2022/7267036 doi (DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 DE-627 ger DE-627 rakwb eng R858-859.7 Jieli Kou verfasserin aut Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Computer applications to medicine. Medical informatics Xiaofei Gu verfasserin aut Liqing Kang verfasserin aut In Computational and Mathematical Methods in Medicine Hindawi Limited, 2011 (2022) (DE-627)519764781 (DE-600)2256917-0 1748670X nnns year:2022 https://doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 kostenfrei http://dx.doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/toc/1748-6718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfields_unstemmed |
10.1155/2022/7267036 doi (DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 DE-627 ger DE-627 rakwb eng R858-859.7 Jieli Kou verfasserin aut Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Computer applications to medicine. Medical informatics Xiaofei Gu verfasserin aut Liqing Kang verfasserin aut In Computational and Mathematical Methods in Medicine Hindawi Limited, 2011 (2022) (DE-627)519764781 (DE-600)2256917-0 1748670X nnns year:2022 https://doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 kostenfrei http://dx.doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/toc/1748-6718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsGer |
10.1155/2022/7267036 doi (DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 DE-627 ger DE-627 rakwb eng R858-859.7 Jieli Kou verfasserin aut Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Computer applications to medicine. Medical informatics Xiaofei Gu verfasserin aut Liqing Kang verfasserin aut In Computational and Mathematical Methods in Medicine Hindawi Limited, 2011 (2022) (DE-627)519764781 (DE-600)2256917-0 1748670X nnns year:2022 https://doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 kostenfrei http://dx.doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/toc/1748-6718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
allfieldsSound |
10.1155/2022/7267036 doi (DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 DE-627 ger DE-627 rakwb eng R858-859.7 Jieli Kou verfasserin aut Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. Computer applications to medicine. Medical informatics Xiaofei Gu verfasserin aut Liqing Kang verfasserin aut In Computational and Mathematical Methods in Medicine Hindawi Limited, 2011 (2022) (DE-627)519764781 (DE-600)2256917-0 1748670X nnns year:2022 https://doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 kostenfrei http://dx.doi.org/10.1155/2022/7267036 kostenfrei https://doaj.org/toc/1748-6718 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2022 |
language |
English |
source |
In Computational and Mathematical Methods in Medicine (2022) year:2022 |
sourceStr |
In Computational and Mathematical Methods in Medicine (2022) year:2022 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computer applications to medicine. Medical informatics |
isfreeaccess_bool |
true |
container_title |
Computational and Mathematical Methods in Medicine |
authorswithroles_txt_mv |
Jieli Kou @@aut@@ Xiaofei Gu @@aut@@ Liqing Kang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
519764781 |
id |
DOAJ02847662X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ02847662X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230226165603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/7267036</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02847662X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5133fef31774396bd63f223e1ab1351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jieli Kou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaofei Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liqing Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Computational and Mathematical Methods in Medicine</subfield><subfield code="d">Hindawi Limited, 2011</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)519764781</subfield><subfield code="w">(DE-600)2256917-0</subfield><subfield code="x">1748670X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/7267036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5133fef31774396bd63f223e1ab1351</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/7267036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-6718</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
callnumber-first |
R - Medicine |
author |
Jieli Kou |
spellingShingle |
Jieli Kou misc R858-859.7 misc Computer applications to medicine. Medical informatics Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
authorStr |
Jieli Kou |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)519764781 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
R858-859 |
illustrated |
Not Illustrated |
issn |
1748670X |
topic_title |
R858-859.7 Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
topic |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_unstemmed |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
topic_browse |
misc R858-859.7 misc Computer applications to medicine. Medical informatics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computational and Mathematical Methods in Medicine |
hierarchy_parent_id |
519764781 |
hierarchy_top_title |
Computational and Mathematical Methods in Medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)519764781 (DE-600)2256917-0 |
title |
Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
ctrlnum |
(DE-627)DOAJ02847662X (DE-599)DOAJe5133fef31774396bd63f223e1ab1351 |
title_full |
Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
author_sort |
Jieli Kou |
journal |
Computational and Mathematical Methods in Medicine |
journalStr |
Computational and Mathematical Methods in Medicine |
callnumber-first-code |
R |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Jieli Kou Xiaofei Gu Liqing Kang |
class |
R858-859.7 |
format_se |
Elektronische Aufsätze |
author-letter |
Jieli Kou |
doi_str_mv |
10.1155/2022/7267036 |
author2-role |
verfasserin |
title_sort |
correlation analysis of computed tomography features and pathological types of multifocal ground-glass nodular lung adenocarcinoma |
callnumber |
R858-859.7 |
title_auth |
Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
abstract |
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. |
abstractGer |
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. |
abstract_unstemmed |
To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma |
url |
https://doi.org/10.1155/2022/7267036 https://doaj.org/article/e5133fef31774396bd63f223e1ab1351 http://dx.doi.org/10.1155/2022/7267036 https://doaj.org/toc/1748-6718 |
remote_bool |
true |
author2 |
Xiaofei Gu Liqing Kang |
author2Str |
Xiaofei Gu Liqing Kang |
ppnlink |
519764781 |
callnumber-subject |
R - General Medicine |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1155/2022/7267036 |
callnumber-a |
R858-859.7 |
up_date |
2024-07-03T17:47:45.625Z |
_version_ |
1803580987803697152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ02847662X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230226165603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230226s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2022/7267036</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ02847662X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJe5133fef31774396bd63f223e1ab1351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R858-859.7</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jieli Kou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Correlation Analysis of Computed Tomography Features and Pathological Types of Multifocal Ground-Glass Nodular Lung Adenocarcinoma</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the correlation between computed tomography (CT) image characteristics of multiple lung ground-glass nodules (GGNs) and pathological classification, the CT image data of multiple lung GGN patients confirmed by pathology (n=132) in our hospital were collected. The imaging features of GGNs were analyzed by qualified physicians, including lesion size (diameter, volume, and mass), location, CT values (mean and relative CT values), lesion morphology (round and irregular), marginal structure (pagination and burr), internal structure (bronchial inflation sign), and adjacent structure (pleural depression). CT imaging analysis was performed for the subtype of infiltrating adenocarcinoma (IAC). In CT findings, GGNs were greatly different from adenomatous hyperplasia (AAH), pure GGN adenocarcinoma in situ (AIS), and microinvasive adenocarcinoma (MIA) in terms of marginal structure, lesion morphology, internal structure, adjacent structure, and size (P<0.05). The mean and relative CT values of mural adenocarcinoma, acinar adenocarcinoma, and papillary adenocarcinoma of IAC subtypes were greatly different from those of AAH/AIS/MIA (P<0.05). In summary, the CT images of GGNs can be used as the basis for the differentiation of AAH, AIS, and MIA early noninvasive types and IAC invasive types, and the CT value of the IAC subtype can be used as the basis for the classification and differentiation of IAC pathological subtypes.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Computer applications to medicine. Medical informatics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaofei Gu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liqing Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Computational and Mathematical Methods in Medicine</subfield><subfield code="d">Hindawi Limited, 2011</subfield><subfield code="g">(2022)</subfield><subfield code="w">(DE-627)519764781</subfield><subfield code="w">(DE-600)2256917-0</subfield><subfield code="x">1748670X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2022</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1155/2022/7267036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/e5133fef31774396bd63f223e1ab1351</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://dx.doi.org/10.1155/2022/7267036</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1748-6718</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2022</subfield></datafield></record></collection>
|
score |
7.400401 |