Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction?
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retrea...
Ausführliche Beschreibung
Autor*in: |
Marzieh Baes [verfasserIn] Stephan Sobolev [verfasserIn] Taras Gerya [verfasserIn] Sascha Brune [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Geochemistry, Geophysics, Geosystems ; 21(2020), 2, Seite n/a-n/a volume:21 ; year:2020 ; number:2 ; pages:n/a-n/a |
---|
Links: |
---|
DOI / URN: |
10.1029/2019GC008663 |
---|
Katalog-ID: |
DOAJ095381880 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ095381880 | ||
003 | DE-627 | ||
005 | 20240413104347.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1029/2019GC008663 |2 doi | |
035 | |a (DE-627)DOAJ095381880 | ||
035 | |a (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a QC801-809 | |
050 | 0 | |a QE1-996.5 | |
100 | 0 | |a Marzieh Baes |e verfasserin |4 aut | |
245 | 1 | 0 | |a Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. | ||
650 | 4 | |a subduction zone | |
650 | 4 | |a plume | |
650 | 4 | |a numerical model | |
650 | 4 | |a singleslab | |
650 | 4 | |a multi‐slab | |
653 | 0 | |a Geophysics. Cosmic physics | |
653 | 0 | |a Geology | |
700 | 0 | |a Stephan Sobolev |e verfasserin |4 aut | |
700 | 0 | |a Taras Gerya |e verfasserin |4 aut | |
700 | 0 | |a Sascha Brune |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Geochemistry, Geophysics, Geosystems |g 21(2020), 2, Seite n/a-n/a |
773 | 1 | 8 | |g volume:21 |g year:2020 |g number:2 |g pages:n/a-n/a |
856 | 4 | 0 | |u https://doi.org/10.1029/2019GC008663 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/28e60e7783ab499589cbfea98131b25f |z kostenfrei |
856 | 4 | 0 | |u https://doi.org/10.1029/2019GC008663 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1525-2027 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
951 | |a AR | ||
952 | |d 21 |j 2020 |e 2 |h n/a-n/a |
author_variant |
m b mb s s ss t g tg s b sb |
---|---|
matchkey_str |
marziehbaesstephansobolevtarasgeryasasch:2020----:lmidcdudcinntainigelbr |
hierarchy_sort_str |
2020 |
callnumber-subject-code |
QC |
publishDate |
2020 |
allfields |
10.1029/2019GC008663 doi (DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology Stephan Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/article/28e60e7783ab499589cbfea98131b25f kostenfrei https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 2 n/a-n/a |
spelling |
10.1029/2019GC008663 doi (DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology Stephan Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/article/28e60e7783ab499589cbfea98131b25f kostenfrei https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 2 n/a-n/a |
allfields_unstemmed |
10.1029/2019GC008663 doi (DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology Stephan Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/article/28e60e7783ab499589cbfea98131b25f kostenfrei https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 2 n/a-n/a |
allfieldsGer |
10.1029/2019GC008663 doi (DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology Stephan Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/article/28e60e7783ab499589cbfea98131b25f kostenfrei https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 2 n/a-n/a |
allfieldsSound |
10.1029/2019GC008663 doi (DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f DE-627 ger DE-627 rakwb eng QC801-809 QE1-996.5 Marzieh Baes verfasserin aut Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology Stephan Sobolev verfasserin aut Taras Gerya verfasserin aut Sascha Brune verfasserin aut In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/article/28e60e7783ab499589cbfea98131b25f kostenfrei https://doi.org/10.1029/2019GC008663 kostenfrei https://doaj.org/toc/1525-2027 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ AR 21 2020 2 n/a-n/a |
language |
English |
source |
In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a |
sourceStr |
In Geochemistry, Geophysics, Geosystems 21(2020), 2, Seite n/a-n/a volume:21 year:2020 number:2 pages:n/a-n/a |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
subduction zone plume numerical model singleslab multi‐slab Geophysics. Cosmic physics Geology |
isfreeaccess_bool |
true |
container_title |
Geochemistry, Geophysics, Geosystems |
authorswithroles_txt_mv |
Marzieh Baes @@aut@@ Stephan Sobolev @@aut@@ Taras Gerya @@aut@@ Sascha Brune @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
id |
DOAJ095381880 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095381880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413104347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2019GC008663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095381880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28e60e7783ab499589cbfea98131b25f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marzieh Baes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singleslab</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi‐slab</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan Sobolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geochemistry, Geophysics, Geosystems</subfield><subfield code="g">21(2020), 2, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2019GC008663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28e60e7783ab499589cbfea98131b25f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2019GC008663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1525-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
callnumber-first |
Q - Science |
author |
Marzieh Baes |
spellingShingle |
Marzieh Baes misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc numerical model misc singleslab misc multi‐slab misc Geophysics. Cosmic physics misc Geology Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
authorStr |
Marzieh Baes |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
QC801-809 |
illustrated |
Not Illustrated |
topic_title |
QC801-809 QE1-996.5 Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? subduction zone plume numerical model singleslab multi‐slab |
topic |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc numerical model misc singleslab misc multi‐slab misc Geophysics. Cosmic physics misc Geology |
topic_unstemmed |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc numerical model misc singleslab misc multi‐slab misc Geophysics. Cosmic physics misc Geology |
topic_browse |
misc QC801-809 misc QE1-996.5 misc subduction zone misc plume misc numerical model misc singleslab misc multi‐slab misc Geophysics. Cosmic physics misc Geology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geochemistry, Geophysics, Geosystems |
hierarchy_top_title |
Geochemistry, Geophysics, Geosystems |
isfreeaccess_txt |
true |
title |
Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
ctrlnum |
(DE-627)DOAJ095381880 (DE-599)DOAJ28e60e7783ab499589cbfea98131b25f |
title_full |
Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
author_sort |
Marzieh Baes |
journal |
Geochemistry, Geophysics, Geosystems |
journalStr |
Geochemistry, Geophysics, Geosystems |
callnumber-first-code |
Q |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Marzieh Baes Stephan Sobolev Taras Gerya Sascha Brune |
container_volume |
21 |
class |
QC801-809 QE1-996.5 |
format_se |
Elektronische Aufsätze |
author-letter |
Marzieh Baes |
doi_str_mv |
10.1029/2019GC008663 |
author2-role |
verfasserin |
title_sort |
plume‐induced subduction initiation: single‐slab or multi‐slab subduction? |
callnumber |
QC801-809 |
title_auth |
Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
abstract |
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. |
abstractGer |
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. |
abstract_unstemmed |
Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ |
container_issue |
2 |
title_short |
Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction? |
url |
https://doi.org/10.1029/2019GC008663 https://doaj.org/article/28e60e7783ab499589cbfea98131b25f https://doaj.org/toc/1525-2027 |
remote_bool |
true |
author2 |
Stephan Sobolev Taras Gerya Sascha Brune |
author2Str |
Stephan Sobolev Taras Gerya Sascha Brune |
callnumber-subject |
QC - Physics |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1029/2019GC008663 |
callnumber-a |
QC801-809 |
up_date |
2024-07-03T14:19:27.622Z |
_version_ |
1803567882702946304 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ095381880</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413104347.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1029/2019GC008663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ095381880</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ28e60e7783ab499589cbfea98131b25f</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC801-809</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE1-996.5</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Marzieh Baes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plume‐Induced Subduction Initiation: Single‐Slab or Multi‐Slab Subduction?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume‐lithosphere interaction. Using 3‐D thermomechanical models we show that the deformation regime, which defines formation of single‐slab or multi‐slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large‐scale lithospheric extension rate. Our model results indicate that on present‐day Earth multi‐slab plume‐induced subduction is initiated only if the oceanic lithosphere is relatively young (<30–40 Myr, but <10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single‐slab subduction is facilitated by older lithosphere and pre‐imposed extensional stresses. In early Earth, plume‐lithosphere interaction could have led to formation of either episodic short‐lived circular subduction when the oceanic lithosphere was young or to multi‐slab subduction when the lithosphere was old.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">subduction zone</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">singleslab</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multi‐slab</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geophysics. Cosmic physics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Geology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stephan Sobolev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Taras Gerya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sascha Brune</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Geochemistry, Geophysics, Geosystems</subfield><subfield code="g">21(2020), 2, Seite n/a-n/a</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:n/a-n/a</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2019GC008663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/28e60e7783ab499589cbfea98131b25f</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1029/2019GC008663</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1525-2027</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="h">n/a-n/a</subfield></datafield></record></collection>
|
score |
7.4028835 |