Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries
Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are curre...
Ausführliche Beschreibung
Autor*in: |
Songhe Zheng [verfasserIn] Jianping Chen [verfasserIn] Ting Wu [verfasserIn] Ruimin Li [verfasserIn] Xiaoli Zhao [verfasserIn] Yajun Pang [verfasserIn] Zhenghui Pan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: Materials - MDPI AG, 2009, 17(2023), 1, p 215 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2023 ; number:1, p 215 |
Links: |
---|
DOI / URN: |
10.3390/ma17010215 |
---|
Katalog-ID: |
DOAJ097785520 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ097785520 | ||
003 | DE-627 | ||
005 | 20240413194328.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.3390/ma17010215 |2 doi | |
035 | |a (DE-627)DOAJ097785520 | ||
035 | |a (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a TK1-9971 | |
050 | 0 | |a TA1-2040 | |
050 | 0 | |a QH201-278.5 | |
050 | 0 | |a QC120-168.85 | |
100 | 0 | |a Songhe Zheng |e verfasserin |4 aut | |
245 | 1 | 9 | |a Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. | ||
650 | 4 | |a ZIBs | |
650 | 4 | |a V<sub<2</sub<O<sub<5</sub< | |
650 | 4 | |a 3D Ni nanonets | |
650 | 4 | |a ion incorporation | |
650 | 4 | |a voltage window | |
650 | 4 | |a reaction kinetics | |
653 | 0 | |a Technology | |
653 | 0 | |a T | |
653 | 0 | |a Electrical engineering. Electronics. Nuclear engineering | |
653 | 0 | |a Engineering (General). Civil engineering (General) | |
653 | 0 | |a Microscopy | |
653 | 0 | |a Descriptive and experimental mechanics | |
700 | 0 | |a Jianping Chen |e verfasserin |4 aut | |
700 | 0 | |a Ting Wu |e verfasserin |4 aut | |
700 | 0 | |a Ruimin Li |e verfasserin |4 aut | |
700 | 0 | |a Xiaoli Zhao |e verfasserin |4 aut | |
700 | 0 | |a Yajun Pang |e verfasserin |4 aut | |
700 | 0 | |a Zhenghui Pan |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t Materials |d MDPI AG, 2009 |g 17(2023), 1, p 215 |w (DE-627)595712649 |w (DE-600)2487261-1 |x 19961944 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2023 |g number:1, p 215 |
856 | 4 | 0 | |u https://doi.org/10.3390/ma17010215 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 |z kostenfrei |
856 | 4 | 0 | |u https://www.mdpi.com/1996-1944/17/1/215 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1996-1944 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2023 |e 1, p 215 |
author_variant |
s z sz j c jc t w tw r l rl x z xz y p yp z p zp |
---|---|
matchkey_str |
article:19961944:2023----::ainleinfioevu2uou5u3ncrselopstsohgvlaenh |
hierarchy_sort_str |
2023 |
callnumber-subject-code |
TK |
publishDate |
2023 |
allfields |
10.3390/ma17010215 doi (DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Songhe Zheng verfasserin aut Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Jianping Chen verfasserin aut Ting Wu verfasserin aut Ruimin Li verfasserin aut Xiaoli Zhao verfasserin aut Yajun Pang verfasserin aut Zhenghui Pan verfasserin aut In Materials MDPI AG, 2009 17(2023), 1, p 215 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:17 year:2023 number:1, p 215 https://doi.org/10.3390/ma17010215 kostenfrei https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 kostenfrei https://www.mdpi.com/1996-1944/17/1/215 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1, p 215 |
spelling |
10.3390/ma17010215 doi (DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Songhe Zheng verfasserin aut Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Jianping Chen verfasserin aut Ting Wu verfasserin aut Ruimin Li verfasserin aut Xiaoli Zhao verfasserin aut Yajun Pang verfasserin aut Zhenghui Pan verfasserin aut In Materials MDPI AG, 2009 17(2023), 1, p 215 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:17 year:2023 number:1, p 215 https://doi.org/10.3390/ma17010215 kostenfrei https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 kostenfrei https://www.mdpi.com/1996-1944/17/1/215 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1, p 215 |
allfields_unstemmed |
10.3390/ma17010215 doi (DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Songhe Zheng verfasserin aut Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Jianping Chen verfasserin aut Ting Wu verfasserin aut Ruimin Li verfasserin aut Xiaoli Zhao verfasserin aut Yajun Pang verfasserin aut Zhenghui Pan verfasserin aut In Materials MDPI AG, 2009 17(2023), 1, p 215 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:17 year:2023 number:1, p 215 https://doi.org/10.3390/ma17010215 kostenfrei https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 kostenfrei https://www.mdpi.com/1996-1944/17/1/215 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1, p 215 |
allfieldsGer |
10.3390/ma17010215 doi (DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Songhe Zheng verfasserin aut Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Jianping Chen verfasserin aut Ting Wu verfasserin aut Ruimin Li verfasserin aut Xiaoli Zhao verfasserin aut Yajun Pang verfasserin aut Zhenghui Pan verfasserin aut In Materials MDPI AG, 2009 17(2023), 1, p 215 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:17 year:2023 number:1, p 215 https://doi.org/10.3390/ma17010215 kostenfrei https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 kostenfrei https://www.mdpi.com/1996-1944/17/1/215 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1, p 215 |
allfieldsSound |
10.3390/ma17010215 doi (DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 DE-627 ger DE-627 rakwb eng TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Songhe Zheng verfasserin aut Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics Jianping Chen verfasserin aut Ting Wu verfasserin aut Ruimin Li verfasserin aut Xiaoli Zhao verfasserin aut Yajun Pang verfasserin aut Zhenghui Pan verfasserin aut In Materials MDPI AG, 2009 17(2023), 1, p 215 (DE-627)595712649 (DE-600)2487261-1 19961944 nnns volume:17 year:2023 number:1, p 215 https://doi.org/10.3390/ma17010215 kostenfrei https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 kostenfrei https://www.mdpi.com/1996-1944/17/1/215 kostenfrei https://doaj.org/toc/1996-1944 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2023 1, p 215 |
language |
English |
source |
In Materials 17(2023), 1, p 215 volume:17 year:2023 number:1, p 215 |
sourceStr |
In Materials 17(2023), 1, p 215 volume:17 year:2023 number:1, p 215 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics Technology T Electrical engineering. Electronics. Nuclear engineering Engineering (General). Civil engineering (General) Microscopy Descriptive and experimental mechanics |
isfreeaccess_bool |
true |
container_title |
Materials |
authorswithroles_txt_mv |
Songhe Zheng @@aut@@ Jianping Chen @@aut@@ Ting Wu @@aut@@ Ruimin Li @@aut@@ Xiaoli Zhao @@aut@@ Yajun Pang @@aut@@ Zhenghui Pan @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
595712649 |
id |
DOAJ097785520 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097785520</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194328.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma17010215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097785520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Songhe Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZIBs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V<sub<2</sub<O<sub<5</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D Ni nanonets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ion incorporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage window</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reaction kinetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ting Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruimin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoli Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajun Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenghui Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">17(2023), 1, p 215</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma17010215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/17/1/215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 215</subfield></datafield></record></collection>
|
callnumber-first |
T - Technology |
author |
Songhe Zheng |
spellingShingle |
Songhe Zheng misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc ZIBs misc V<sub<2</sub<O<sub<5</sub< misc 3D Ni nanonets misc ion incorporation misc voltage window misc reaction kinetics misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
authorStr |
Songhe Zheng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)595712649 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
TK1-9971 |
illustrated |
Not Illustrated |
issn |
19961944 |
topic_title |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries ZIBs V<sub<2</sub<O<sub<5</sub< 3D Ni nanonets ion incorporation voltage window reaction kinetics |
topic |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc ZIBs misc V<sub<2</sub<O<sub<5</sub< misc 3D Ni nanonets misc ion incorporation misc voltage window misc reaction kinetics misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_unstemmed |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc ZIBs misc V<sub<2</sub<O<sub<5</sub< misc 3D Ni nanonets misc ion incorporation misc voltage window misc reaction kinetics misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
topic_browse |
misc TK1-9971 misc TA1-2040 misc QH201-278.5 misc QC120-168.85 misc ZIBs misc V<sub<2</sub<O<sub<5</sub< misc 3D Ni nanonets misc ion incorporation misc voltage window misc reaction kinetics misc Technology misc T misc Electrical engineering. Electronics. Nuclear engineering misc Engineering (General). Civil engineering (General) misc Microscopy misc Descriptive and experimental mechanics |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Materials |
hierarchy_parent_id |
595712649 |
hierarchy_top_title |
Materials |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)595712649 (DE-600)2487261-1 |
title |
Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
ctrlnum |
(DE-627)DOAJ097785520 (DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515 |
title_full |
Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
author_sort |
Songhe Zheng |
journal |
Materials |
journalStr |
Materials |
callnumber-first-code |
T |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Songhe Zheng Jianping Chen Ting Wu Ruimin Li Xiaoli Zhao Yajun Pang Zhenghui Pan |
container_volume |
17 |
class |
TK1-9971 TA1-2040 QH201-278.5 QC120-168.85 |
format_se |
Elektronische Aufsätze |
author-letter |
Songhe Zheng |
doi_str_mv |
10.3390/ma17010215 |
author2-role |
verfasserin |
title_sort |
design of ni-doped v<sub<2</sub<o<sub<5</sub<3d ni core/shell composites for high-voltage and high-rate aqueous zinc-ion batteries |
callnumber |
TK1-9971 |
title_auth |
Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
abstract |
Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. |
abstractGer |
Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. |
abstract_unstemmed |
Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1, p 215 |
title_short |
Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries |
url |
https://doi.org/10.3390/ma17010215 https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515 https://www.mdpi.com/1996-1944/17/1/215 https://doaj.org/toc/1996-1944 |
remote_bool |
true |
author2 |
Jianping Chen Ting Wu Ruimin Li Xiaoli Zhao Yajun Pang Zhenghui Pan |
author2Str |
Jianping Chen Ting Wu Ruimin Li Xiaoli Zhao Yajun Pang Zhenghui Pan |
ppnlink |
595712649 |
callnumber-subject |
TK - Electrical and Nuclear Engineering |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.3390/ma17010215 |
callnumber-a |
TK1-9971 |
up_date |
2024-07-03T13:46:21.649Z |
_version_ |
1803565800256176128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">DOAJ097785520</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240413194328.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/ma17010215</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ097785520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ1e29f6547fcb4853ad5b6d6c44be6515</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK1-9971</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH201-278.5</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC120-168.85</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Songhe Zheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="9"><subfield code="a">Rational Design of Ni-Doped V<sub<2</sub<O<sub<5</sub<3D Ni Core/Shell Composites for High-Voltage and High-Rate Aqueous Zinc-Ion Batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aqueous zinc-ion batteries (ZIBs) have significant potential for large energy storage systems because of their high energy density, cost-effectiveness and environmental friendliness. However, the limited voltage window, poor reaction kinetics and structural instability of cathode materials are current bottlenecks which contain the further development of ZIBs. In this work, we rationally design a Ni-doped V<sub<2</sub<O<sub<5</sub<3D Ni core/shell composite on a carbon cloth electrode (Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC) by growing Ni-V<sub<2</sub<O<sub<5</sub< on free-standing 3D Ni metal nanonets for high-voltage and high-capacity ZIBs. Impressively, embedded Ni doping increases the interlayer spacing of V<sub<2</sub<O<sub<5</sub<, extending the working voltage and improving the zinc-ion (Zn<sub<30</sub<<sup<2+</sup<) reaction kinetics of the cathode materials; at the same time, the 3D structure, with its high specific surface area and superior electronic conductivity, aids in fast Zn<sub<30</sub<<sup<2+</sup< transport. Consequently, the as-designed Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes can operate within a wide voltage window from 0.3 to 1.8 V vs. Zn<sub<30</sub</Zn<sub<30</sub<<sup<2+</sup< and deliver a high capacity of 270 mAh g<sup<−1</sup< (~1050 mAh cm<sup<−3</sup<) at a high current density of 0.8 A g<sup<−1</sup<. In addition, reversible Zn<sup<2+</sup< (de)incorporation reaction mechanisms in the Ni-V<sub<2</sub<O<sub<5</sub<@3D Ni@CC cathodes are investigated through multiple characterization methods (SEM, TEM, XRD, XPS, etc.). As a result, we achieved significant progress toward practical applications of ZIBs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZIBs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">V<sub<2</sub<O<sub<5</sub<</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D Ni nanonets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ion incorporation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">voltage window</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reaction kinetics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">T</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electrical engineering. Electronics. Nuclear engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Microscopy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Descriptive and experimental mechanics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jianping Chen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ting Wu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ruimin Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiaoli Zhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yajun Pang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhenghui Pan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">Materials</subfield><subfield code="d">MDPI AG, 2009</subfield><subfield code="g">17(2023), 1, p 215</subfield><subfield code="w">(DE-627)595712649</subfield><subfield code="w">(DE-600)2487261-1</subfield><subfield code="x">19961944</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1, p 215</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/ma17010215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/1e29f6547fcb4853ad5b6d6c44be6515</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.mdpi.com/1996-1944/17/1/215</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1996-1944</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2023</subfield><subfield code="e">1, p 215</subfield></datafield></record></collection>
|
score |
7.4004793 |