Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study
This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concen...
Ausführliche Beschreibung
Autor*in: |
Leon Ćatipović [verfasserIn] Shubha Sathyendranath [verfasserIn] Frano Matić [verfasserIn] Žarko Kovač [verfasserIn] Luka Kovačić [verfasserIn] Živana Ninčević Gladan [verfasserIn] Sanda Skejić [verfasserIn] Hrvoje Kalinić [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2024 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
In: International Journal of Applied Earth Observations and Geoinformation - Elsevier, 2022, 128(2024), Seite 103727- |
---|---|
Übergeordnetes Werk: |
volume:128 ; year:2024 ; pages:103727- |
Links: |
---|
DOI / URN: |
10.1016/j.jag.2024.103727 |
---|
Katalog-ID: |
DOAJ098699245 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | DOAJ098699245 | ||
003 | DE-627 | ||
005 | 20240414091739.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240413s2024 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jag.2024.103727 |2 doi | |
035 | |a (DE-627)DOAJ098699245 | ||
035 | |a (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
050 | 0 | |a GB3-5030 | |
050 | 0 | |a GE1-350 | |
100 | 0 | |a Leon Ćatipović |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
264 | 1 | |c 2024 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. | ||
650 | 4 | |a Satellite | |
650 | 4 | |a Chlorophyll-a concentration | |
650 | 4 | |a Uncertainties | |
650 | 4 | |a Uncertainty source | |
653 | 0 | |a Physical geography | |
653 | 0 | |a Environmental sciences | |
700 | 0 | |a Shubha Sathyendranath |e verfasserin |4 aut | |
700 | 0 | |a Frano Matić |e verfasserin |4 aut | |
700 | 0 | |a Žarko Kovač |e verfasserin |4 aut | |
700 | 0 | |a Luka Kovačić |e verfasserin |4 aut | |
700 | 0 | |a Živana Ninčević Gladan |e verfasserin |4 aut | |
700 | 0 | |a Sanda Skejić |e verfasserin |4 aut | |
700 | 0 | |a Hrvoje Kalinić |e verfasserin |4 aut | |
773 | 0 | 8 | |i In |t International Journal of Applied Earth Observations and Geoinformation |d Elsevier, 2022 |g 128(2024), Seite 103727- |w (DE-627)359784119 |w (DE-600)2097960-5 |x 1872826X |7 nnns |
773 | 1 | 8 | |g volume:128 |g year:2024 |g pages:103727- |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jag.2024.103727 |z kostenfrei |
856 | 4 | 0 | |u https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 |z kostenfrei |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S1569843224000815 |z kostenfrei |
856 | 4 | 2 | |u https://doaj.org/toc/1569-8432 |y Journal toc |z kostenfrei |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_DOAJ | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 128 |j 2024 |h 103727- |
author_variant |
l ć lć s s ss f m fm ž k žk l k lk ž n g žng s s ss h k hk |
---|---|
matchkey_str |
article:1872826X:2024----::oreoucranynaeltdrvdhoohlaocnrto |
hierarchy_sort_str |
2024 |
callnumber-subject-code |
GB |
publishDate |
2024 |
allfields |
10.1016/j.jag.2024.103727 doi (DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 DE-627 ger DE-627 rakwb eng GB3-5030 GE1-350 Leon Ćatipović verfasserin aut Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences Shubha Sathyendranath verfasserin aut Frano Matić verfasserin aut Žarko Kovač verfasserin aut Luka Kovačić verfasserin aut Živana Ninčević Gladan verfasserin aut Sanda Skejić verfasserin aut Hrvoje Kalinić verfasserin aut In International Journal of Applied Earth Observations and Geoinformation Elsevier, 2022 128(2024), Seite 103727- (DE-627)359784119 (DE-600)2097960-5 1872826X nnns volume:128 year:2024 pages:103727- https://doi.org/10.1016/j.jag.2024.103727 kostenfrei https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1569843224000815 kostenfrei https://doaj.org/toc/1569-8432 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 128 2024 103727- |
spelling |
10.1016/j.jag.2024.103727 doi (DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 DE-627 ger DE-627 rakwb eng GB3-5030 GE1-350 Leon Ćatipović verfasserin aut Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences Shubha Sathyendranath verfasserin aut Frano Matić verfasserin aut Žarko Kovač verfasserin aut Luka Kovačić verfasserin aut Živana Ninčević Gladan verfasserin aut Sanda Skejić verfasserin aut Hrvoje Kalinić verfasserin aut In International Journal of Applied Earth Observations and Geoinformation Elsevier, 2022 128(2024), Seite 103727- (DE-627)359784119 (DE-600)2097960-5 1872826X nnns volume:128 year:2024 pages:103727- https://doi.org/10.1016/j.jag.2024.103727 kostenfrei https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1569843224000815 kostenfrei https://doaj.org/toc/1569-8432 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 128 2024 103727- |
allfields_unstemmed |
10.1016/j.jag.2024.103727 doi (DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 DE-627 ger DE-627 rakwb eng GB3-5030 GE1-350 Leon Ćatipović verfasserin aut Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences Shubha Sathyendranath verfasserin aut Frano Matić verfasserin aut Žarko Kovač verfasserin aut Luka Kovačić verfasserin aut Živana Ninčević Gladan verfasserin aut Sanda Skejić verfasserin aut Hrvoje Kalinić verfasserin aut In International Journal of Applied Earth Observations and Geoinformation Elsevier, 2022 128(2024), Seite 103727- (DE-627)359784119 (DE-600)2097960-5 1872826X nnns volume:128 year:2024 pages:103727- https://doi.org/10.1016/j.jag.2024.103727 kostenfrei https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1569843224000815 kostenfrei https://doaj.org/toc/1569-8432 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 128 2024 103727- |
allfieldsGer |
10.1016/j.jag.2024.103727 doi (DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 DE-627 ger DE-627 rakwb eng GB3-5030 GE1-350 Leon Ćatipović verfasserin aut Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences Shubha Sathyendranath verfasserin aut Frano Matić verfasserin aut Žarko Kovač verfasserin aut Luka Kovačić verfasserin aut Živana Ninčević Gladan verfasserin aut Sanda Skejić verfasserin aut Hrvoje Kalinić verfasserin aut In International Journal of Applied Earth Observations and Geoinformation Elsevier, 2022 128(2024), Seite 103727- (DE-627)359784119 (DE-600)2097960-5 1872826X nnns volume:128 year:2024 pages:103727- https://doi.org/10.1016/j.jag.2024.103727 kostenfrei https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1569843224000815 kostenfrei https://doaj.org/toc/1569-8432 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 128 2024 103727- |
allfieldsSound |
10.1016/j.jag.2024.103727 doi (DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 DE-627 ger DE-627 rakwb eng GB3-5030 GE1-350 Leon Ćatipović verfasserin aut Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study 2024 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences Shubha Sathyendranath verfasserin aut Frano Matić verfasserin aut Žarko Kovač verfasserin aut Luka Kovačić verfasserin aut Živana Ninčević Gladan verfasserin aut Sanda Skejić verfasserin aut Hrvoje Kalinić verfasserin aut In International Journal of Applied Earth Observations and Geoinformation Elsevier, 2022 128(2024), Seite 103727- (DE-627)359784119 (DE-600)2097960-5 1872826X nnns volume:128 year:2024 pages:103727- https://doi.org/10.1016/j.jag.2024.103727 kostenfrei https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 kostenfrei http://www.sciencedirect.com/science/article/pii/S1569843224000815 kostenfrei https://doaj.org/toc/1569-8432 Journal toc kostenfrei GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 128 2024 103727- |
language |
English |
source |
In International Journal of Applied Earth Observations and Geoinformation 128(2024), Seite 103727- volume:128 year:2024 pages:103727- |
sourceStr |
In International Journal of Applied Earth Observations and Geoinformation 128(2024), Seite 103727- volume:128 year:2024 pages:103727- |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Satellite Chlorophyll-a concentration Uncertainties Uncertainty source Physical geography Environmental sciences |
isfreeaccess_bool |
true |
container_title |
International Journal of Applied Earth Observations and Geoinformation |
authorswithroles_txt_mv |
Leon Ćatipović @@aut@@ Shubha Sathyendranath @@aut@@ Frano Matić @@aut@@ Žarko Kovač @@aut@@ Luka Kovačić @@aut@@ Živana Ninčević Gladan @@aut@@ Sanda Skejić @@aut@@ Hrvoje Kalinić @@aut@@ |
publishDateDaySort_date |
2024-01-01T00:00:00Z |
hierarchy_top_id |
359784119 |
id |
DOAJ098699245 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ098699245</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414091739.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2024.103727</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098699245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Leon Ćatipović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll-a concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubha Sathyendranath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Žarko Kovač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luka Kovačić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanda Skejić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hrvoje Kalinić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Applied Earth Observations and Geoinformation</subfield><subfield code="d">Elsevier, 2022</subfield><subfield code="g">128(2024), Seite 103727-</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="x">1872826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:103727-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jag.2024.103727</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1569843224000815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1569-8432</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2024</subfield><subfield code="h">103727-</subfield></datafield></record></collection>
|
callnumber-first |
G - Geography, Anthropology, Recreation |
author |
Leon Ćatipović |
spellingShingle |
Leon Ćatipović misc GB3-5030 misc GE1-350 misc Satellite misc Chlorophyll-a concentration misc Uncertainties misc Uncertainty source misc Physical geography misc Environmental sciences Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
authorStr |
Leon Ćatipović |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)359784119 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
DOAJ |
remote_str |
true |
callnumber-label |
GB3-5030 |
illustrated |
Not Illustrated |
issn |
1872826X |
topic_title |
GB3-5030 GE1-350 Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study Satellite Chlorophyll-a concentration Uncertainties Uncertainty source |
topic |
misc GB3-5030 misc GE1-350 misc Satellite misc Chlorophyll-a concentration misc Uncertainties misc Uncertainty source misc Physical geography misc Environmental sciences |
topic_unstemmed |
misc GB3-5030 misc GE1-350 misc Satellite misc Chlorophyll-a concentration misc Uncertainties misc Uncertainty source misc Physical geography misc Environmental sciences |
topic_browse |
misc GB3-5030 misc GE1-350 misc Satellite misc Chlorophyll-a concentration misc Uncertainties misc Uncertainty source misc Physical geography misc Environmental sciences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Applied Earth Observations and Geoinformation |
hierarchy_parent_id |
359784119 |
hierarchy_top_title |
International Journal of Applied Earth Observations and Geoinformation |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)359784119 (DE-600)2097960-5 |
title |
Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
ctrlnum |
(DE-627)DOAJ098699245 (DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5 |
title_full |
Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
author_sort |
Leon Ćatipović |
journal |
International Journal of Applied Earth Observations and Geoinformation |
journalStr |
International Journal of Applied Earth Observations and Geoinformation |
callnumber-first-code |
G |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2024 |
contenttype_str_mv |
txt |
container_start_page |
103727 |
author_browse |
Leon Ćatipović Shubha Sathyendranath Frano Matić Žarko Kovač Luka Kovačić Živana Ninčević Gladan Sanda Skejić Hrvoje Kalinić |
container_volume |
128 |
class |
GB3-5030 GE1-350 |
format_se |
Elektronische Aufsätze |
author-letter |
Leon Ćatipović |
doi_str_mv |
10.1016/j.jag.2024.103727 |
author2-role |
verfasserin |
title_sort |
sources of uncertainty in satellite-derived chlorophyll-a concentration—an adriatic sea case study |
callnumber |
GB3-5030 |
title_auth |
Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
abstract |
This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. |
abstractGer |
This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. |
abstract_unstemmed |
This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_DOAJ GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2014 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study |
url |
https://doi.org/10.1016/j.jag.2024.103727 https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5 http://www.sciencedirect.com/science/article/pii/S1569843224000815 https://doaj.org/toc/1569-8432 |
remote_bool |
true |
author2 |
Shubha Sathyendranath Frano Matić Žarko Kovač Luka Kovačić Živana Ninčević Gladan Sanda Skejić Hrvoje Kalinić |
author2Str |
Shubha Sathyendranath Frano Matić Žarko Kovač Luka Kovačić Živana Ninčević Gladan Sanda Skejić Hrvoje Kalinić |
ppnlink |
359784119 |
callnumber-subject |
GB - Physical Geography |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jag.2024.103727 |
callnumber-a |
GB3-5030 |
up_date |
2024-07-03T18:42:21.158Z |
_version_ |
1803584422448988161 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">DOAJ098699245</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240414091739.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240413s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jag.2024.103727</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)DOAJ098699245</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DOAJ7f7388583229480ea7b67b4347d3f9f5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GB3-5030</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">GE1-350</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Leon Ćatipović</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sources of uncertainty in satellite-derived chlorophyll-a concentration—An Adriatic Sea case study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2024</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper analyses a time series of chlorophyll-a profiles in the Adriatic from 1997 to 2019, and compares the data with satellite products with the view of analysing and reducing uncertainties in the corresponding satellite products. Three sources of uncertainties in satellite chlorophyll-a concentration are examined: (a) the algorithm itself; (b) the vertical structure of the water column; and (c) the phytoplankton community structure. Global and regional algorithms were examined, along with a local algorithm tuned using the time series data. The global algorithm produced the largest uncertainties when compared with the in situ data, followed by the regional and local algorithms. Correlation coefficient for the local algorithm was 0.690 - a significant increase from regional’s 0.420 and global’s 0.042. Both the global and the regional algorithms exhibited systemic errors that inversely were related to chlorophyll-a concentration, while the local algorithm displayed some reduction in the systematic errors, highlighting the value of local in situ observations, for improving sub-regional and local algorithms for retrieval of chlorophyll-a concentration from satellite ocean colour data. While the mixed layer has not shown any direct correlation with the uncertainties, it may facilitate exceptionally strong vertical gradients in chlorophyll-a profiles after summer blooms that take role as the main source of high differences between satellite observations and surface chlorophyll-a concentration. As such, it is important to supplement satellite measurements with vertical profiles to ensure valid readings and exercise caution when dealing with data post-blooms. These instances occurred in less than 3% of all cases. Differences in the phytoplankton community structures have shown direct correlation to estimation error - Miozoa is associated with low error, Bacillariophyta with high error, while Phytoflagellates abundance tips the error between underestimation and overestimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Satellite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chlorophyll-a concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty source</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Physical geography</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Environmental sciences</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shubha Sathyendranath</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Frano Matić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Žarko Kovač</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Luka Kovačić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Živana Ninčević Gladan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Sanda Skejić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Hrvoje Kalinić</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">In</subfield><subfield code="t">International Journal of Applied Earth Observations and Geoinformation</subfield><subfield code="d">Elsevier, 2022</subfield><subfield code="g">128(2024), Seite 103727-</subfield><subfield code="w">(DE-627)359784119</subfield><subfield code="w">(DE-600)2097960-5</subfield><subfield code="x">1872826X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2024</subfield><subfield code="g">pages:103727-</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jag.2024.103727</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doaj.org/article/7f7388583229480ea7b67b4347d3f9f5</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/article/pii/S1569843224000815</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/toc/1569-8432</subfield><subfield code="y">Journal toc</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_DOAJ</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2024</subfield><subfield code="h">103727-</subfield></datafield></record></collection>
|
score |
7.401602 |